Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 239: 124771, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31520970

RESUMO

Sorption of radionuclides on mineral surfaces retards their migration in the environment of a repository. Presence of organic ligands, however, affects sorption and consequently influences their transport behavior. In this study, we quantify the sorption of Eu(III) onto quartz surfaces as a function of pH in the absence and presence of diethylenetriaminepentaacetic acid (DTPA). Batch sorption experiments show a pH-dependent sorption of Eu(III) on quartz. The presence of DTPA results in slightly higher sorption of Eu(III) at neutral to slightly acidic pH and considerably lower sorption at alkaline conditions. Sorption experiments were simulated using the Diffuse Double Layer Model (DDLM) with single sorption sites (≡QOH) and monodentate surface complexation. The reactions were established based on the aqueous speciation calculation under the experimental conditions, and the thermodynamic constants of surface reactions were obtained and refined by numerical optimization. Results of surface complexation modeling show the formation of a surface species ≡QOHEuDTPA2-, explaining the elevated sorption of Eu(III) at neutral to slightly acidic pH. In contrast, dissolved EuDTPA2- complex species are present at alkaline pH, resulting in an enhanced mobility of Eu(III).


Assuntos
Európio/química , Modelos Químicos , Ácido Pentético/química , Quartzo/química , Adsorção , Concentração de Íons de Hidrogênio , Poluentes Radioativos do Solo/química , Termodinâmica
2.
Chemosphere ; 178: 277-281, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28334668

RESUMO

High carbonate content of the European Kupferschiefer ore deposits is a challenge for acid copper leaching (pH ≤ 2). Therefore investigating the mobility behavior of Cu(II) under conditions related to an alternative, neutrophil biohydrometallurgical Cu(II) leaching approach is of interest. As glutamic acid (Glu) might be present as a component in the growth media, we studied its effects on the adsorption of Cu(II) onto kaolinite. The binary and ternary batch sorption measurements of Cu(II) and Glu onto kaolinite were performed in the presence of 10 mM NaClO4 as background electrolyte and at a pH range from 4 to 9. Sorption experiments were modeled by the charge-distribution multi-site ion complexation (CD-MUSIC) model by using single sorption site (≡SOH) and monodentate surface complexation reactions. Glu sorption on kaolinite is weak (<10%) and independent of pH. Furthermore, Glu slightly enhances the Cu(II) sorption at low pH but strongly hinders (up to 50%) the sorption at higher pH and therewith enhances copper mobility. The results of isotherms show that Cu(II)-Glu sorption onto kaolinite mimics the Freundlich model. The proposed CD-MUSIC model provides a close fit to the experimental data and predicts the sorption of Cu(II), Cu(II)-Glu and Glu onto kaolinite as well as the effect of Glu on Cu(II) mobility.


Assuntos
Cobre/isolamento & purificação , Ácido Glutâmico/química , Caulim/química , Adsorção , Cobre/química , Recuperação e Remediação Ambiental/métodos , Concentração de Íons de Hidrogênio , Modelos Químicos
3.
Environ Sci Technol ; 50(21): 11610-11618, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27754663

RESUMO

The ternary system containing aqueous U(VI), aqueous phosphate and solid SiO2 was comprehensively investigated using a batch sorption technique, in situ attenuated total reflection Fourier-transform infrared (ATR FT-IR) spectroscopy, time-resolved luminescence spectroscopy (TRLS), and surface complexation modeling (SCM). The batch sorption studies on silica gel (10 g/L) in the pH range 2.5 to 5 showed no significant increase in U(VI) uptake in the presence of phosphate at equimolar concentration of 20 µM, but significant increase in U(VI) uptake was observed for higher phosphate concentrations. In situ infrared and luminescence spectroscopic studies evidence the formation of two binary U(VI) surface species in the absence of phosphate, whereas after prolonged sorption in the presence of phosphate, the formation of a surface precipitate, most likely an autunite-like phase, is strongly suggested. From SCM, excellent fitting results were obtained exclusively considering two binary uranyl surface species and the formation of a solid uranyl phosphate phase. Ternary surface complexes were not needed to explain the data. The results of this study indicate that the sorption of U(VI) on SiO2 in the presence of inorganic phosphate initially involves binary surface-sorption species and evolves toward surface precipitation.


Assuntos
Dióxido de Silício , Urânio/química , Adsorção , Fosfatos , Espectroscopia de Infravermelho com Transformada de Fourier , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...