Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dev Cell ; 54(4): 516-528.e7, 2020 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-32841595

RESUMO

Human pluripotent stem cell (hPSC)-derived intestinal organoids (HIOs) lack some cellular populations found in the native organ, including vasculature. Using single-cell RNA sequencing (scRNA-seq), we have identified a population of endothelial cells (ECs) present early in HIO differentiation that declines over time in culture. Here, we developed a method to expand and maintain this endogenous population of ECs within HIOs (vHIOs). Given that ECs possess organ-specific gene expression, morphology, and function, we used bulk RNA-seq and scRNA-seq to interrogate the developing human intestine, lung, and kidney in order to identify organ-enriched EC gene signatures. By comparing these gene signatures and validated markers to HIO ECs, we find that HIO ECs grown in vitro share the highest similarity with native intestinal ECs relative to kidney and lung. Together, these data demonstrate that HIOs can co-differentiate a native EC population that is properly patterned with an intestine-specific EC transcriptional signature in vitro.


Assuntos
Células Endoteliais/metabolismo , Mucosa Intestinal/crescimento & desenvolvimento , Intestinos/crescimento & desenvolvimento , Especificidade de Órgãos/genética , Diferenciação Celular/genética , Linhagem Celular , Regulação da Expressão Gênica/genética , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Mucosa Intestinal/metabolismo , Rim/crescimento & desenvolvimento , Rim/metabolismo , Pulmão/crescimento & desenvolvimento , Pulmão/metabolismo , Organoides/crescimento & desenvolvimento , Organoides/metabolismo , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , RNA-Seq
2.
ACS Biomater Sci Eng ; 4(8): 3006-3015, 2018 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-31544149

RESUMO

Cryopreservation is of significance in areas including tissue engineering, regenerative medicine, and organ transplantation. We investigated endothelial cell attachment and membrane integrity in a microvasculature model at high subzero temperatures in the presence of extracellular ice. The results show that in the presence of heterogeneous extracellular ice formation induced by ice nucleating bacteria, endothelial cells showed improved attachment at temperature minimums of -6 °C. However, as temperatures decreased below -6 °C, endothelial cells required additional cryoprotectants. The glucose analog, 3-O-methyl-D-glucose (3-OMG), rescued cell attachment optimally at 100 mM (cells/lane was 34, as compared to 36 for controls), while 2% and 5% polyethylene glycol (PEG) were equally effective at -10 °C (88% and 86.4% intact membranes). Finally, endothelialized microchannels were stored for 72 h at -10 °C in a preservation solution consisting of the University of Wisconsin (UW) solution, Snomax, 3-OMG, PEG, glycerol, and trehalose, whereby cell attachment was not significantly different from unfrozen controls, although membrane integrity was compromised. These findings enrich our knowledge about the direct impact of extracellular ice on endothelial cells. Specifically, we show that, by controlling the ice nucleation temperature and uniformity, we can preserve cell attachment and membrane integrity. Further, we demonstrate the strength of leveraging endothelialized microchannels to fuel discoveries in cryopreservation of thick tissues and solid organs.

3.
Sci Rep ; 7(1): 2433, 2017 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-28550299

RESUMO

Circulating tumor cell clusters (CTC clusters) are potent initiators of metastasis and potentially useful clinical markers for patients with cancer. Although there are numerous devices developed to isolate individual circulating tumor cells from blood, these devices are ineffective at capturing CTC clusters, incapable of separating clusters from single cells and/or cause cluster damage or dissociation during processing. The only device currently able to specifically isolate CTC clusters from single CTCs and blood cells relies on the batch immobilization of clusters onto micropillars which necessitates long residence times and causes damage to clusters during release. Here, we present a two-stage continuous microfluidic chip that isolates and recovers viable CTC clusters from blood. This approach uses deterministic lateral displacement to sort clusters by capitalizing on two geometric properties: size and asymmetry. Cultured breast cancer CTC clusters containing between 2-100 + cells were recovered from whole blood using this integrated two-stage device with minimal cluster dissociation, 99% recovery of large clusters, cell viabilities over 87% and greater than five-log depletion of red blood cells. This continuous-flow cluster chip will enable further studies examining CTC clusters in research and clinical applications.


Assuntos
Separação Celular/métodos , Tamanho Celular , Técnicas Analíticas Microfluídicas/métodos , Células Neoplásicas Circulantes/patologia , Separação Celular/instrumentação , Sobrevivência Celular , Citometria de Fluxo , Humanos , Técnicas Analíticas Microfluídicas/instrumentação , Reprodutibilidade dos Testes , Análise de Célula Única/instrumentação , Análise de Célula Única/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...