Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Magn Reson Imaging ; 53: 98-104, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30036652

RESUMO

This work aims to demonstrate that radial acquisition with k-space variant reduced-FOV reconstruction can enable real-time cardiac MRI with an affordable computation cost. Due to non-uniform sampling, radial imaging requires k-space variant reconstruction for optimal performance. By converting radial parallel imaging reconstruction into the estimation of correlation functions with a previously-developed correlation imaging framework, Cartesian k-space may be reconstructed point-wisely based on parallel imaging relationship between every Cartesian datum and its neighboring radial samples. Furthermore, reduced-FOV correlation functions may be used to calculate a subset of Cartesian k-space data for image reconstruction within a small region of interest, making it possible to run real-time cardiac MRI with an affordable computation cost. In a stress cardiac test where the subject is imaged during biking with a heart rate of >100 bpm, this k-space variant reduced-FOV reconstruction is demonstrated in reference to several radial imaging techniques including gridding, GROG and SPIRiT. It is found that the k-space variant reconstruction outperforms gridding, GROG and SPIRiT in real-time imaging. The computation cost of reduced-FOV reconstruction is ~2 times higher than that of GROG. The presented work provides a practical solution to real-time cardiac MRI with radial acquisition and k-space variant reduced-FOV reconstruction in clinical settings.


Assuntos
Coração/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética , Algoritmos , Eletrocardiografia , Teste de Esforço , Análise de Fourier , Frequência Cardíaca , Humanos , Modelos Estatísticos , Imagens de Fantasmas , Radiografia
2.
Magn Reson Med ; 67(4): 1183-93, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21842501

RESUMO

In 7 T traveling wave imaging, waveguide modes supported by the scanner radiofrequency shield are used to excite an MR signal in samples or tissue which may be several meters away from the antenna used to drive radiofrequency power into the system. To explore the potential merits of traveling wave excitation for whole-body imaging at 7 T, we compare numerical simulations of traveling wave and TEM systems, and juxtapose full-wave electrodynamic simulations using a human body model with in vivo human traveling wave imaging at multiple stations covering the entire body. The simulated and in vivo traveling wave results correspond well, with strong signal at the periphery of the body and weak signal deep in the torso. These numerical results also illustrate the complicated wave behavior that emerges when a body is present. The TEM resonator simulation allowed comparison of traveling wave excitation with standard quadrature excitation, showing that while the traveling wave B +1 per unit drive voltage is much less than that of the TEM system, the square of the average B +1 compared to peak specific absorption rate (SAR) values can be comparable in certain imaging planes. Both systems produce highly inhomogeneous excitation of MR signal in the torso, suggesting that B(1) shimming or other parallel transmission methods are necessary for 7 T whole body imaging.


Assuntos
Imageamento por Ressonância Magnética/métodos , Imagem Corporal Total/métodos , Simulação por Computador , Campos Eletromagnéticos , Análise de Fourier , Humanos , Aumento da Imagem/métodos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/instrumentação , Imagem Corporal Total/instrumentação
3.
Magn Reson Med ; 62(5): 1338-41, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19780162

RESUMO

Sodium ((23)Na) MRI may provide unique information about the cellular and metabolic integrity of the brain. The quantification of tissue sodium concentration from (23)Na images with nonzero echo time (TE) requires knowledge of tissue-specific parameters that influence the single-quantum sodium signal such as transverse (T(2)) relaxation times. We report the sodium ((23)Na) long component of the effective transverse relaxation time T(2) (*) values obtained at 7 T in several brain regions from six healthy volunteers. A two-point protocol based on a gradient-echo sequence optimized for the least error per given imaging time was used (TE(1) = 12 ms; TE(2) = 37 ms; averaged N(1) = 5; N(2) = 15 times; pulse repetition time = 130 ms). The results reveal that long T(2)(*) component of tissue sodium (mean +/- standard deviation) varied between cerebrospinal fluid (54 +/- 4 ms) and gray (28 +/- 2 ms) and white (29 +/- 2 ms) matter structures. The results also show that the long T(2)(*) component increases as a function of the main static field B(0), indicating that correlation time of sodium ion motion is smaller than the time-scale defined by the Larmor frequency. These results are a prerequisite for the quantification of tissue sodium concentration from (23)Na MRI scans with nonzero echo time, will contribute to the design of future measurements (such as triple-quantum imaging), and themselves may be of clinical utility.


Assuntos
Química Encefálica , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética/métodos , Reconhecimento Automatizado de Padrão/métodos , Sódio/análise , Sódio/química , Adulto , Simulação por Computador , Feminino , Humanos , Aumento da Imagem/métodos , Modelos Lineares , Masculino , Modelos Biológicos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Adulto Jovem
4.
Magn Reson Med ; 55(5): 1132-41, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16586457

RESUMO

Hyperpolarized helium (3He) gas MRI has the potential to assess pulmonary function. The non-equilibrium state of hyperpolarized 3He results in the continual depletion of the signal level over the course of excitations. Under non-equilibrium conditions the relationship between the signal-to-noise ratio (SNR) and the number of excitations significantly deviates from that established in the equilibrium state. In many circumstances the SNR increases or remains the same when the number of data acquisitions decreases. This provides a unique opportunity for performing parallel MRI in such a way that both the temporal and spatial resolution will increase without the conventional decrease in the SNR. In this study an analytical relationship between the SNR and the number of excitations for any flip angle was developed. Second, the point-spread function (PSF) was utilized to quantitatively demonstrate the unconventional SNR behavior for parallel imaging in hyperpolarized gas MRI. Third, a 24-channel (24ch) receive and two-channel (2ch) transmit phased-array system was developed to experimentally prove the theoretical predictions with 3He MRI. The in vivo experimental results prove that significant temporal resolution can be gained without the usual SNR loss in an equilibrium system, and that the entire lung can be scanned within one breath-hold (approximately 13 s) by applying parallel imaging to 3D data acquisition.


Assuntos
Hélio , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Armazenamento e Recuperação da Informação/métodos , Pulmão/anatomia & histologia , Imageamento por Ressonância Magnética/instrumentação , Administração por Inalação , Algoritmos , Metodologias Computacionais , Desenho de Equipamento , Análise de Falha de Equipamento , Hélio/administração & dosagem , Humanos , Aumento da Imagem/instrumentação , Interpretação de Imagem Assistida por Computador/instrumentação , Imageamento Tridimensional/instrumentação , Imageamento por Ressonância Magnética/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
5.
Conf Proc IEEE Eng Med Biol Soc ; 2005: 4278-81, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-17281180

RESUMO

Hyperpolarized 3He gas MRI has a serious potential for assessing pulmonary functions. Due to the fact that the non-equilibrium of the gas results in a steady depletion of the signal level over the course of the excitations, the signal-tonoise ratio (SNR) can be independent of the number of the data acquisitions under certain circumstances. This provides a unique opportunity for parallel MRI for gaining both temporal and spatial resolution without reducing SNR. We have built a 24-channel receive / 2-channel transmit phased array system for 3He parallel imaging. Our in vivo experimental results proved that the significant temporal and spatial resolution can be gained at no cost to the SNR. With 3D data acquisition, eight fold (2x4) scan time reduction can be achieved without any aliasing in images. Additionally, a rigid analysis using the low impedance preamplifier for decoupling presented evidence of strong coupling.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...