Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(11)2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38893818

RESUMO

In this work, we focus on a detailed study of the role of each component layer in the multilayer structure of a magnetic tunnel junction (MTJ) as well as the analysis of the effects that the deposition parameters of the thin films have on the performance of the structure. Various techniques including atomic force microscopy (AFM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) were used to investigate the effects of deposition parameters on the surface roughness and thickness of individual layers within the MTJ structure. Furthermore, this study investigates the influence of thin films thickness on the magnetoresistive properties of the MTJ structure, focusing on the free ferromagnetic layer and the barrier layer (MgO). Through systematic analysis and optimization of the deposition parameters, this study demonstrates a significant improvement in the tunnel magnetoresistance (TMR) of the MTJ structure of 10% on average, highlighting the importance of precise control over thin films properties for enhancing device performance.

2.
Nanomedicine ; 60: 102766, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38901809

RESUMO

Remote magneto-mechanical actuation (MMA) of magnetic nanoparticles (MNP) is emerging as a promising therapy method in oncology. However, translation to the clinic faces the challenge of whole-body action and the reluctance about indiscriminate mechanical action of the nanoparticles on tumor and healthy cells. Here, we show how the MMA method based on magnetically-rotated gold-coated MNP boosts only the activity of an unbound antitumor drug, without physical damage of cells via MNP. Therefore, in clinical practice, the effect of antitumor drug can be safely increased systemically while maintaining drug concentrations at current doses.

3.
Nanomaterials (Basel) ; 14(7)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38607133

RESUMO

In this study, we report the influence of the Pt concentration in CoxPt100-x alloys on the catalytic activity of the alloys for 4-nitrophenol (4-NP) reduction. More precisely, a series of CoxPt100-x alloys with a Pt concentration ranging between 60% and 95% were prepared using electrodeposition at controlled potentials from stable hexachloroplatinate aqueous solution. The Pt concentration was tuned by varying the electrodeposition potential from -0.6 to -0.9 V. The changes in the CoxPt100-x alloy microstructure and crystalline structure have been investigated using SEM and TEM analysis. Our results show that the microstructure and the crystalline structure of the as-prepared materials do not depend on the electrodeposition potential. However, the catalytic activity of CoxPt100-x alloys is closely correlated with the potential applied during electrochemical synthesis, hence the Pt content. We demonstrated that the synthesized materials present a high catalytic activity (approx. 90%) after six cycles of reusability despite the fact that the Pt content of the as-prepared alloys decreases. The easy preparation method that guarantees more than 97% catalytic activity of the CoxPt100-x alloys, the easy recovery from solution, and the possibility of reusing the CoxPt100-x alloys are the benefits of the present study.

4.
Materials (Basel) ; 17(5)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38473612

RESUMO

In this paper, we report for the first time on the theoretical and experimental investigation of Fe77.5Si7.5B15 amorphous glass-coated nanowires by analyzing samples with the same diameters in both cases. The hysteresis curves, the dependence of the switching field values on nanowire dimensions, and the effect of the magnetoelastic anisotropy on the magnetization processes were analyzed and interpreted to explain the magnetization reversal in highly magnetostrictive amorphous nanowires prepared in cylindrical shape by rapid quenching from the melt. All the measured samples were found to be magnetically bistable, being characterized by rectangular hysteresis loops. The most important feature of the study is the inclusion of the magnetoelastic anisotropy term that originates in the specific production process of these amorphous nanowires. The results show that the switching field decreases when the nanowire diameter increases and this effect is due to the reduction in anisotropy and in the intrinsic mechanical stresses. Moreover, the obtained results reveal the importance of factors such as geometry and magnetoelastic anisotropy for the experimental design of cylindrical amorphous nanowires for multiple applications in miniaturized devices, like micro and nanosensors.

5.
Nanomaterials (Basel) ; 13(23)2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-38063695

RESUMO

Electrochemical anodization is already a well-established process, owing to its multiple benefits for creating high-grade titanium dioxide nanotubes with suitable characteristics and tunable shapes. Nevertheless, more research is necessary to fully comprehend the basic phenomena at the anode-electrolyte interface during anodization. In a recent paper, we proposed the use of sawtooth-shaped voltage pulses for Ti anodization, which controls the pivoting point of the balance between the two processes that compete to create nanotubes during a self-organization process: oxide etching and oxidation. Under these conditions, pulsed anodization clearly reveals the history of nanotube growth as recorded in the nanotube morphology. We show that by selecting the suitable electrolyte and electrical discharge settings, a nanoporous structure may be generated as a repeating pattern along the nanotube wall axis. We report the findings in terms of nanotube morphology, crystallinity, surface chemistry, photocatalytic activity, and surface hydrophilicity as they relate to the electrical parameters of electrochemical anodization. Aside from their fundamental relevance, our findings could lead to the development of a novel form of TiO2 nanotube array layer.

6.
Nanomaterials (Basel) ; 13(22)2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37999295

RESUMO

Magnetic nanoparticles (MPs) are emerging as powerful and versatile tools for biotechnology, including cancer research and theranostic applications. Stem cell-mediated magnetic particle delivery has been previously recognized as a modality to target sites of malignancies. Here, we propose the use of adipose-derived mesenchymal cells (ADSC) for the targeted delivery of Fe-Cr-Nb-B magnetic particles to human osteosarcoma (HOS) cells and magneto-mechanical actuation (MMA) for targeting and destroying HOS cells. We show that MPs are easily incorporated by ADSCs and HOS cells, as confirmed by TEM images and a ferrozine assay. MP-loaded ADSCs display increased motility towards tumor cells compared with their unloaded counterparts. MMA of MP-loaded ADSCs induces HOS destruction, as confirmed by the MTT and live/dead assays. MMA enables the release of the MPs towards cancer cells, producing a significant decrease (about 80%) in HOS viability immediately after application. In contrast, normal human dermal fibroblasts' (NHDFs) viability exposed to similar conditions remains high, showing a differential behavior of normal and malignant cells to MP load and MMA exposure. Taken together, the method could derive successful strategies for in vivo applications in targeting and destroying malignant cells while protecting normal cells.

7.
Materials (Basel) ; 16(13)2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37444814

RESUMO

The continuous development of urban areas around the world led to an increase in construction material use and demand, with concrete seeing significant market uptake. Although significant progress has been made to reduce the environmental impact of concrete, there is still a stringent need for improvement. One of the most widely used methods to reduce the environmental impact of the cement industry and the construction industry alike is the replacement of ordinary Portland cement (OPC) by supplementary cementitious materials (SCM). Aside from by-products of industry, SCMs could also come from natural sources. Taking into account the porous structure of zeolites and their contribution to the improvement of the mechanical and durability properties of cement-based materials, the analysis of pore structure in cement pastes incorporating micronized natural zeolite is deemed necessary. In this research, the OPC was replaced by zeolite in three different percentages: 10%, 20%, and 30% by mass. The evolution of pore structure was investigated by means of nuclear magnetic resonance relaxometry at the curing ages of 1, 7, and 28 days. The microstructure of cement pastes was assessed by scanning electron microscopy investigations at 1, 7, 14, 21, and 28 days. The obtained results show that smaller pore sizes are present in cement pastes containing zeolites during the first 7 days. However, at the age of 28 days, the reference mix exhibits a similar pore structure to the mix containing 10% micronized zeolite due to the presence of larger amounts of hydration products. Increasing the replacement percentage to 30% results in larger pores, as indicated by larger values of the relaxation time.

8.
Sensors (Basel) ; 23(9)2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37177692

RESUMO

A series of polyimide supramolecular systems containing different amounts of azochromophore were tested as flexible supports that can be used in the fabrication of certain devices, such as sensors for monitoring the temperature changes, by coating them with conductive metals. That is why it is required to have good interfacial compatibility between the flexible substrate and the inorganic layer. The interface of the sensor elements must be designed in such a way as to improve the sensitivity, accuracy, and response time of the device. Laser irradiation is one of the commonly employed techniques used for surface adaptation by patterning polyimides to increase contact and enhance device reliability and signal transmission. In this context, this work highlights unreported aspects arising from the azo-polyimide morphology, local nanomechanical properties and wettability, which are impacting the compatibility with silver. The texture parameters indicate an improvement of the modulations' quality arising after laser irradiation through the phase mask, increasing the bearing capacity, fluid retention, and surface anisotropy when the amount of the azochromophore increases. The force curve spectroscopy and wettability studies indicated that the modification of the polymer morphology and surface chemistry lead to a better interfacial interaction with the metal lines when the azo component and the polyamidic acid are in equimolar quantities.

9.
ACS Appl Mater Interfaces ; 15(4): 5744-5759, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36651701

RESUMO

The paper presents a study concerning the role of ferroelectric filler size and clustering in the dielectric properties of 20%BaTiO3-80%PVDF and of 20% (2%Ag-98%BaTiO3)-PVDF hybrid nanocomposites. By finite element calculations, it was shown that using fillers with ε > 103 does not provide a permittivity rise in the composites and the effective dielectric constant tends to saturate to specific values determined by the filler size and agglomeration degree. Irrespective of the ferroelectric filler sizes, the addition of metallic ultrafine nanoparticles (Ag) results in permittivity intensification and the effect is even stronger if the metallic nanoparticles are connected to a higher degree with the ferroelectric particles' surfaces. When using coarse ferroelectric fillers, the probability of clustering is higher, thus favoring the permittivity increase by field concentration in small regions close to the interfaces separating dissimilar materials. The modeling results were validated by an experimental dielectric analysis performed in a series of PVDF-based thick films with the same amount of BaTiO3 fillers or with Ag-BaTiO3 hybrid fillers. Similar trends as predicted by simulations were found experimentally but with slightly higher permittivity values which were assigned to the modifications of the polymer phase composition due to the presence of nanofillers and the local sample inhomogeneity (the presence of clustering, in particular for coarse BaTiO3 grains), which create regions with enhanced local fields.

10.
Nanomaterials (Basel) ; 12(9)2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35564196

RESUMO

A ferrofluid based on Fe67.2Cr12.5Nb0.3B20 magnetic particles with a low Curie temperature was prepared. The particles, most of which had dimensions under 60 nm, were dispersed in a calcium gluconate solution, leading to a stable ferrofluid. The obtained ferrofluid had a magnetization of 0.04 to 0.17 emu/cm3, depending on the particles' concentration, and a viscosity that increased nonlinearly with the applied magnetic field. The ferrofluid appeared to be biocompatible, as it showed low cytotoxicity, even at high concentrations and for long intervals of co-incubation with human cells, demonstrating a good potential to be used for cancer therapies through magnetic hyperthermia as well as magneto-mechanical actuation.

11.
Nanomaterials (Basel) ; 12(6)2022 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-35335747

RESUMO

The role of Ag addition on the structural, dielectric, and mechanical harvesting response of 20%(xAg - (1 - x)BaTiO3) - 80%PVDF (x = 0, 2, 5, 7 and 27 vol.%) flexible composites is investigated. The inorganic fillers were realized by precipitating fine (~3 nm) silver nanoparticles onto BaTiO3 nanoparticles (~60 nm average size). The hybrid admixtures with a total filling factor of 20 vol.% were embedded into the PVDF matrix. The presence of filler enhances the amount of ß-PVDF polar phase and the BaTiO3 filler induces an increase of the permittivity from 11 to 18 (1 kHz) in the flexible composites. The addition of increasing amounts of Ag is further beneficial for permittivity increase; with the maximum amount (x = 27 vol.%), permittivity is three times larger than in pure PVDF (εr ~ 33 at 1 kHz) with a similar level of tangent losses. This result is due to the local field enhancement in the regions close to the filler-PVDF interfaces which are additionally intensified by the presence of silver nanoparticles. The metallic addition is also beneficial for the mechanical harvesting ability of such composites: the amplitude of the maximum piezoelectric-triboelectric combined output collected in open circuit conditions increases from 0.2 V/cm2 (PVDF) to 30 V/cm2 for x = 27 vol.% Ag in a capacitive configuration. The role of ferroelectric and metallic nanoparticles on the increasing mechanical-electric conversion response is also been explained.

12.
Nanomaterials (Basel) ; 12(3)2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35159857

RESUMO

Due to an attractive combination of chemical and physical properties, silicon carbide (SiC) thin films are excellent candidates for coatings to be used in harsh environment applications or as protective coatings in heat exchanger applications. This work reports the deposition of near-stoichiometric and nanocrystalline SiC thin films, at room temperature, on silicon (100) substrates using a DCMS/HiPIMS co-sputtering technique (DCMS-direct current magnetron sputtering; HiPIMS-high-power impulse magnetron sputtering). Their structural and mechanical properties were analyzed as a function of the process gas pressure. The correlation between the films' microstructure and their mechanical properties was thoroughly investigated. The microstructure and morphology of these films were examined by appropriate microscopic and spectroscopic methods: atomic force microscopy (AFM), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), and Raman spectroscopy, while their mechanical and tribological properties were evaluated by instrumented indentation and micro-scratch techniques. The lowest value of the working gas pressure resulted in SiC films of high crystallinity, as well as in an improvement in their mechanical performances. Both hardness (H) and Young's modulus (E) values were observed to be significantly influenced by the sputtering gas pressure. Decreasing the gas pressure from 2.0 to 0.5 Pa led to an increase in H and E values from 8.2 to 20.7 GPa and from 106.3 to 240.0 GPa, respectively. Both the H/E ratio and critical adhesion load values follow the same trend and increase from 0.077 to 0.086 and from 1.55 to 3.85 N, respectively.

13.
Int J Mol Sci ; 24(1)2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36613905

RESUMO

Preparing biological specimens for scanning electron microscopy (SEM) can be difficult to implement, as it requires specialized equipment and materials as well as the training of dedicated personnel. Moreover, the procedure often results in damage to the samples to be analyzed. This work presents a protocol for the preparation of biological samples to evaluate the adherence of nanomaterials on the cell surface using SEM. To this end, we used silicon wafers as a substrate to grow cells and replaced difficult steps such as the critical point drying of the samples in order to make the method quicker and easier to perform. The new protocol was tested using two different types of cells, i.e., human osteosarcoma cells and adipose-derived mesenchymal stem cells, and it proved that it can grossly preserve cell integrity in order to be used to estimate nanomaterials' interaction with cell surfaces.


Assuntos
Elétrons , Nanoestruturas , Humanos , Microscopia Eletrônica de Varredura , Membrana Celular , Manejo de Espécimes/métodos
14.
Polymers (Basel) ; 13(2)2021 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-33440804

RESUMO

Novel hybrid inorganic CoFe2O4/carboxymethyl cellulose (CMC) polymeric framework nanobeads-type adsorbents with tailored magnetic properties were synthesized by a combination of coprecipitation and flash-cooling technology. Precise self-assembly engineering of their shape and composition combined with deep testing for cadmium removal from wastewater are investigated. The development of a single nanoscale object with controllable composition and spatial arrangement of CoFe2O4 (CF) nanoparticles in carboxymethyl cellulose (CMC) as polymeric matrix, is giving new boosts to treatments of wastewaters containing heavy metals. The magnetic nanobeads were characterized by means of scanning electron microscopy (SEM), powder X-ray diffraction analysis (XRD), thermogravimetric analysis (TG), and vibrational sample magnetometer (VSM). The magnetic properties of CF@CMC sample clearly exhibit ferromagnetic nature. Value of 40.6 emu/g of saturation magnetization would be exploited for magnetic separation from aqueous solution. In the adsorptions experiments the assessment of equilibrium and kinetic parameters were carried out by varying adsorbent dosage, contact time and cadmium ion concentration. The kinetic behavior of adsorption process was best described by pseudo-second-order model and the Langmuir isotherm was fitted best with maximum capacity uptake of 44.05 mg/g.

15.
Materials (Basel) ; 13(19)2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33019737

RESUMO

In the present work, BaZr0.05Ti0.95O3 ceramics with grain sizes between 0.45 and 135 µm were prepared by solid-state reaction and classical sintering. The effect of grain size on dielectric properties was systematically explored, and it was found that dielectric permittivity reaches a maximum value for grain sizes between 1.5 and 10 µm and then rapidly drops for larger grain sizes. A numerical finite element method was employed to eliminate the effect of porosity on the effective values of permittivity. The results indicate that it is possible to have a critical size in slightly doped barium titanate ceramics with enhanced functional properties for a grain size between 1.5 and 10 µm.

16.
Mater Sci Eng C Mater Biol Appl ; 117: 111288, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32919649

RESUMO

This work addresses current direction of the nanoparticles-based systems intended for cancer therapy by developing a newly-formulated innovative chemically-engineered anti-tumor composite consisting in a magnetic, fluorescent, lipophilic, and biologically-active carbon heterostructure capable by itself or through coupling with a chemotherapeutic agent to selectively induce tumor cell death. The anti-tumor compound was synthesized through a modified sol-gel method by addition of a low-cost molecule with recently proven anti-tumor properties which was combusted and flash-cooled along with magnetic iron oxides precursors at 250 °C. The synthesized compound consisted in carbon dots, graphene and hematite nanoparticles which endowed the composite with unique simultaneous fluorescence, magnetic and anti-tumor properties. The in-vitro cytotoxicity performed on tumor cells (human osteosarcoma) and normal cells (fibroblasts) showed a selective cytotoxic effect induced after 24 h of treatment by the drug-free composite, leading to a cell death of 37%, for a composite concentration of 0.01 mg/mL per 104 tumor cells, whereas the composite loaded with an antitumor drug (mitoxantrone) boosted the cell death effect to 47% for similar exposure conditions. The method shows high potential as it boosts drug transfer within tumor cells. Different antitumor drugs already in clinical use can be used following their separate or in-cocktail controlled combustion.


Assuntos
Antineoplásicos , Nanopartículas , Antineoplásicos/farmacologia , Carbono , Humanos , Fenômenos Magnéticos , Magnetismo
17.
Nanomaterials (Basel) ; 10(10)2020 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-32977596

RESUMO

Herein we report on the synthesis and the effects of gradual loading of TiO2 nanotube array layers with ZnO upon surface wettability. Two-step preparation was chosen, where TiO2 nanotube layers, grown in a first instance by anodization of a Ti foil, were gradually loaded with controlled amounts of ZnO using the reactive RF magnetron sputtering. After crystallization annealing, the formerly amorphous TiO2 nanotubes were converted to predominantly anatase crystalline phase, as detected by XRD measurements. The as-prepared nanotubes exhibited a well-aligned columnar structure, 1.6 µm long and 88 nm in diameter, and a small concentration of oxygen vacancies. Ti2+ and Ti3+ occur along with the Ti4+ state upon sputter-cleaning the layer surfaces from contaminants. The Ti2+ and Ti3+ signals diminish with gradual ZnO loading. As demonstrated by the VB-XPS data, the ZnO loading is accompanied by a slight narrowing of the band gap of the materials. A combined effect of material modification and surface roughness was taken into consideration to explain the evolution of surface super-hydrophilicity of the materials under UV irradiation. The loading process resulted in increasing surface wettability with approx. 33%, and in a drastic extension of activation decay, which clearly points out to the effect of ZnO-TiO2 heterojunctions.

18.
Materials (Basel) ; 13(15)2020 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-32722604

RESUMO

The present paper reports the dependence of dielectric, ferroelectric and piezoelectric properties on the porosity level in BaZr0.15Ti0.85O3 ceramics with porosity from 5% to 21%. Microporosity with 0-3 connectivity has been produced using PMMA microspheres as a sacrificial template. The functional properties (dielectric, ferroelectric and piezoelectric effect) are mostly affected by the "dilution effect": permittivity decreases by 40% when porosity increases by 21%, and Pmax decreases from 13 to 5 µC/cm2 while the Prem is in the range of (2-8) µC/cm2. However, the reduction of the zero-field permittivity and hysteretic behaviour of ε(E) while the tunability level is still high makes from porous ceramics interesting materials for tunability application.

19.
Mater Sci Eng C Mater Biol Appl ; 109: 110652, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32228923

RESUMO

Magnetic nanoparticles (MNPs) are versatile tools for various applications in biotechnology and nanomedicine. MNPs-mediated cell tracking, targeting and imaging are increasingly studied for regenerative medicine applications in cell therapy and tissue engineering. Mechanical stimulation influences mesenchymal stem cell differentiation. Here we show that MNPs-mediated magneto-mechanical stimulation of human primary adipose derived stem cells (ADSCs) exposed to variable magnetic field (MF) influences their adipogenic and osteogenic differentiation. ADSCs loaded with biocompatible magnetite nanoparticles of 6.6 nm, and with an average load of 21 picograms iron/cell were exposed to variable low intensity (0.5 mT - LMF) and higher intensity magnetic fields (14.7 and 21.6 mT - HMF). Type, duration, intensity and frequency of MF differently affect differentiation. Short time (2 days) intermittent exposure to LMF increases adipogenesis while longer (7 days) intermittent as well as continuous exposure favors osteogenesis. HMF (21.6 mT) short time intermittent exposure favors osteogenesis. Different exposure protocols can be used to increase differentiation dependently on expected results. Magnetic remotely-actuated MNPs up-taken by ADSCs promotes the shift towards osteoblastic lineage. ADSCs-MNPs under MF exposure could be used for enabling osteoblastic conversion during cell therapy for systemic osteoporosis. Current results enable further in vivo studies investigating the role of remotely-controlled magnetically actuated ADSCs-MNPs for the treatment of osteoporosis.


Assuntos
Tecido Adiposo/metabolismo , Diferenciação Celular , Campos Magnéticos , Nanopartículas Magnéticas de Óxido de Ferro/química , Osteogênese , Células-Tronco/metabolismo , Tecido Adiposo/citologia , Humanos , Células-Tronco/citologia
20.
Nanotechnology ; 28(25): 255302, 2017 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-28471756

RESUMO

Titanium oxide/silicon oxide (TiO2/SiO2) 2D patterns were obtained by magnetron sputtering depositions of Ti on close-packed and size-reduced colloidal masks on Si and quartz substrates, followed by mask lift-off and ending with thermal oxidation. The physical processes involved in growing 2D Ti patterns and their oxidation are analyzed. For the magnetron sputtering deposition, two regimes are considered: the low-pressure regime when the flux of sputtered atoms is anisotropic, and the high-pressure regime, when the flux of sputtered atoms is isotropic due to frequent collisions. Moreover, magnetron sputtering operation modes, such as dc sputtering and high power impulse sputtering, are compared. The changes in pattern size and morphology determined by the oxidation of the Ti patterns and Si substrate are analyzed. The hydrophilicity induced by UV-light irradiation and the visible-light photocatalytic activity towards the degradation of the methylene blue of the fabricated TiO2/SiO2 patterns were considerably higher when compared to the performances of uniform TiO2 films.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...