Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Micromachines (Basel) ; 15(2)2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38398929

RESUMO

Utilizing the principle of laser-induced periodic surface structures (LIPSSs), this research delves into the morphological evolution of single-crystal silicon surfaces irradiated by a near-infrared picosecond laser through a scanning mode. With the increase in laser energy density, the nanostructure morphology on single-crystal silicon surfaces induced by incident lasers with different polarization directions sequentially produces high spatial-frequency LIPSSs (HSFLs) with a period of 220 nm ± 10 nm parallel to the laser polarization, low spatial-frequency LIPSSs (LSFLs) with a period of 770 nm ± 85 nm perpendicular to the direction of the polarization, and groove structures. Furthermore, by varying the angle between the laser polarization and the scanning direction, the study examined the combined anisotropic effects of the laser polarization scanning direction angle and the laser polarization crystal orientation angle on the genesis of LIPSSs on single-crystal silicon (100) surfaces. The experiments revealed polarization-related anisotropic characteristics in the morphology of HSFLs. It was found that when the polarization angle approached 45°, the regularity of the LSFLs deteriorated, the modification width decreased, and the periodicity increased. This is critical for the precise control of the LSFLs' morphology.

2.
Opt Express ; 31(15): 24054-24066, 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37475242

RESUMO

We use THz probe pulses to detect and analyze the dynamics of charge transport anisotropies generated by ultrafast laser two-photon absorption in Zinc Telluride (ZnTe) semi-insulating crystal showing smooth and laser structured surfaces. The detected anisotropy consists in a modulation of the THz transmission as a function of the orientation of the <001 > axis of ZnTe. The change in THz transmission after pump excitation is attributed to free carrier absorption of the THz field in the laser-induced electron-hole plasma. Pre-structuring the surface sample with laser-induced periodic surface structures (ripples) has strong influence on free carrier THz transmission and its associated anisotropic oscillation. Within the relaxation dynamics of the laser-induced free carriers, two relaxation times have to be considered in order to correctly describe the dynamics, a fast relaxation, of about 50 picoseconds in pristine sample (90 picoseconds in sample pre-structured with ripples), and a slow one, of about 1.5 nanoseconds. A theoretical model based on classical Drude theory and on the dependence of the two-photon absorption coefficient with the crystal orientation and with the laser polarization is used to fit the experimental results.

3.
Materials (Basel) ; 15(16)2022 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-36013831

RESUMO

The properties of polarization-selective, light-guiding systems upon subwavelength nanogratings formation in the case of type II refractive index traces induced by femtosecond laser pulses in bulk fused silica were studied. Polarization-dependent scattering is analyzed both in simulation using a finite-difference, time-domain method and in experiments. We argue that the polarization-sensitive optical guiding of type II waveguides is due to polarization-dependent scattering of nanogratings. Optical designs can then be suggested where the guiding efficiency of type I traces can be combined with type II anisotropies. A low-loss waveguide polarizer is demonstrated based on the modulation of the evanescent field emerging from type I waveguides using polarization-dependent scattering of neighboring nanogratings.

5.
J Chem Phys ; 156(22): 224301, 2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35705413

RESUMO

Coupling and spatial localization of energy on ultrafast timescales and particularly on the timescale of the excitation pulse in ultrashort laser irradiated dielectric materials are key elements for enabling processing precision beyond the optical limit. Transforming matter on mesoscopic scales facilitates the definition of nanoscale photonic functions in optical glasses. On these timescales, quantum interactions induced by charge non-equilibrium become the main channel for energy uptake and transfer as well as for the material structural change. We apply a first-principles model to determine dynamic distortions of energy bands following the rapid increase in the free-carrier population in an amorphous dielectric excited by an ultrashort laser pulse. Fused silica glass is reproduced using a system of (SiO4)4- tetrahedra, where density functional theory extended to finite-temperature fractional occupation reproduces ground and photoexcited states. Triggered by electronic charge redistribution, a bandgap narrowing of more than 2 eV is shown to occur in fused silica under geometry relaxation. Calculations reveal that the bandgap decrease results from the rearrangement of atoms altering the bonding strength. Despite an atomic movement impacting strongly the structural stability, the observed change of geometry remains limited to 7% of the interatomic distance and occurs on the femtosecond timescale. This structural relaxation is thus expected to take place quasi-instantly following the photon energy flux. Moreover, under intense laser pulse excitation, fused silica loses its stability when an electron temperature of around 2.8 eV is reached. A further increase in the excitation energy leads to the collapse of both the structure and bandgap.

6.
Opt Express ; 30(7): 10614-10632, 2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35473024

RESUMO

A field-ready, fiber-based high spatial sampling snapshot imaging spectrometer was developed for applications such as environmental monitoring and smart farming. The system achieves video rate frame transfer and exposure times down to a few hundred microseconds in typical daylight conditions with ∼63,000 spatial points and 32 spectral channels across the 470nm to 700nm wavelength range. We designed portable, ruggedized opto-mechanics to allow for imaging from an airborne platform. To ensure successful data collection prior to flight, imaging speed and signal-to-noise ratio was characterized for imaging a variety of land covers from the air. The system was validated by performing a series of observations including: Liriope Muscari plants under a range of water-stress conditions in a controlled laboratory experiment and field observations of sorghum plants in a variety of soil conditions. Finally, we collected data from a series of engineering flights and present reassembled images and spectral sampling of rural and urban landscapes.


Assuntos
Diagnóstico por Imagem , Tecnologia de Sensoriamento Remoto , Monitoramento Ambiental , Plantas
7.
Sci Rep ; 12(1): 2074, 2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-35136107

RESUMO

A highly efficient drilling process is found in non-transparent metallic materials enabled by the use of non-diffractive ultrafast Bessel beams. Applied for deep drilling through a 200 µm-thick steel plate, the Bessel beam demonstrates twofold higher drilling efficiency compared to a Gaussian beam of similar fluence and spot size. Notwithstanding that surface ablation occurs with the same efficiency for both beams, the drilling booster results from a self-replication and reconstruction of the beam along the axis, driven by internal reflections within the crater at quasi-grazing incidence, bypassing potential obstacles. The mechanism is the consequence of an oblique wavevectors geometry with low angular dispersion and generates a propagation length beyond the projection range allowed by the geometry of the channel. With only the main lobe being selected by the channel entrance, side-wall reflection determines the refolding of the lobe on the axis, enhancing and replicating the beam multiple times inside the channel. The process is critically assisted by the reduction of particle shielding enabled by the intrinsic self-healing of the Bessel beam. Thus the drilling process is sustained in a way which is uniquely different from that of the conventional Gaussian beam, the latter being damped within its Rayleigh range. These mechanisms are supported and quantified by Finite Difference Time Domain calculations of the beam propagation. The results show key advantages for the quest towards efficient laser drilling and fabrication processes.

8.
Materials (Basel) ; 16(1)2022 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-36614521

RESUMO

The use of ultrafast cylindrical vector vortex beams in laser-matter interactions permits new ablation features to be harnessed from inhomogeneous distributions of polarization and beam geometry. As a consequence, the ablation process can yield higher ablation efficiency compared with conventional Gaussian beams. These beams prevent surface quality degradation during the ablative processes. When processing stainless steel and titanium, the average surface roughness obtained by deploying the cylindrical vector is up to 94% lower than the Gaussian case, and the processing efficiency is 80% higher.

9.
Micromachines (Basel) ; 12(12)2021 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-34945429

RESUMO

Slit-shaped laser beams focused in bulk optical materials can realize embedded waveguides with circular cross sections consisting of positive index change type I traces. In these kinds of waveguide traces, a peculiar periodical refractive index modulation was observed in type I waveguides with two different femtosecond lasers. The direction of refractive index modulation can be controlled with the slit configuration, and its period can be controlled by mechanical perturbation of the stages and the scanning speed. We argue that platform perturbation and dynamical thermal transport processes during the scan are generating factors in the appearance of this modulation. The embedded microstructures in waveguides can provide spectrum modulation, which may have potential applications in optical sensing, filtering, and phase control.

10.
Opt Express ; 29(19): 30174-30197, 2021 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-34614746

RESUMO

The tunable light-guide image processing snapshot spectrometer (TuLIPSS) is a novel remote sensing instrument that can capture a spectral image cube in a single snapshot. The optical modelling application for the absolute signal intensity on a single pixel of the sensor in TuLIPSS has been developed through a numerical simulation of the integral performance of each optical element in the TuLIPSS system. The absolute spectral intensity of TuLIPSS can be determined either from the absolute irradiance of the observed surface or from the tabulated spectral reflectance of various land covers and by the application of a global irradiance approach. The model is validated through direct comparison of the simulated results with observations. Based on tabulated spectral reflectance, the deviation between the simulated results and the measured observations is less than 5% of the spectral light flux across most of the detection bandwidth for a Lambertian-like surface such as concrete. Additionally, the deviation between the simulated results and the measured observations using global irradiance information is less than 10% of the spectral light flux across most of the detection bandwidth for all surfaces tested. This optical modelling application of TuLIPSS can be used to assist the optimal design of the instrument and explore potential applications. The influence of the optical components on the light throughput is discussed with the optimal design being a compromise among the light throughput, spectral resolution, and cube size required by the specific application under consideration. The TuLIPSS modelling predicts that, for the current optimal low-cost configuration, the signal to noise ratio can exceed 10 at 10 ms exposure time, even for land covers with weak reflectance such as asphalt and water. Overall, this paper describes the process by which the optimal design is achieved for particular applications and directly connects the parameters of the optical components to the TuLIPSS performance.

11.
Nanomaterials (Basel) ; 11(6)2021 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-34071595

RESUMO

Nano-crystals were formed in the exposed regions of photo-thermo-refractive glass undergoing irradiation with zeroth order chirp-controlled ultrafast laser Bessel beams and subsequent heat treatment. Effects of various writing powers, pulse durations and heat treatment time on the distribution and the size of the nano-crystals were investigated. The results show that nano-crystals' distribution depended on the laser power density spatial shape, while the size of the nano-crystals is quasi-independent. However, the average diameter of the nano-crystals was affected by the heat treatment time, decreasing from 175 to 105 nm with the time halved. In addition, using crystallographic characterization by X-ray diffraction, the nano-crystal composition in the laser-exposed regions was detected to be sodium fluoride.

12.
Micromachines (Basel) ; 11(11)2020 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-33143011

RESUMO

We report the potential use of non-diffractive Bessel beam for ultrafast laser processing in additive manufacturing environments, its integration into a fast scanning platform, and proof-of-concept side-wall polishing of stainless steel-based additively fabricated parts. We demonstrate two key advantages of the zeroth-order Bessel beam: the significantly long non-diffractive length for large tolerance of sample positioning and the unique self-reconstruction property for un-disrupted beam access, despite the obstruction of metallic powders in the additive manufacturing environment. The integration of Bessel beam scanning platform is constructed by finely adapting the Bessel beam into a Galvano scanner. The beam sustained its good profile within the scan field of 35 × 35 mm2. As a proof of concept, the platform showcases its advanced capacity by largely reducing the side-wall surface roughness of an additively as-fabricated workpiece from Ra 10 µm down to 1 µm. Therefore, the demonstrated Bessel-Scanner configuration possesses great potential for integrating in a hybrid additive manufacturing apparatus.

13.
Sci Rep ; 10(1): 15152, 2020 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-32938949

RESUMO

We describe the evolution of ultrafast-laser-excited bulk fused silica over the entire relaxation range in one-dimensional geometries fixed by non-diffractive beams. Irradiation drives local embedded modifications of the refractive index in the form of index increase in densified glass or in the form of nanoscale voids. A dual spectroscopic and imaging investigation procedure is proposed, coupling electronic excitation and thermodynamic relaxation. Specific sub-ps and ns plasma decay times are respectively correlated to these index-related electronic and thermomechanical transformations. For the void formation stages, based on time-resolved spectral imaging, we first observe a dense transient plasma phase that departs from the case of a rarefied gas, and we indicate achievable temperatures in the excited matter in the 4,000-5,500 K range, extending for tens of ns. High-resolution speckle-free microscopy is then used to image optical signatures associated to structural transformations until the evolution stops. Multiscale imaging indicates characteristic timescales for plasma decay, heat diffusion, and void cavitation, pointing out key mechanisms of material transformation on the nanoscale in a range of processing conditions. If glass densification is driven by sub-ps electronic decay, for nanoscale structuring we advocate the passage through a long-living dense ionized phase that decomposes on tens of ns, triggering cavitation.

14.
Micromachines (Basel) ; 11(7)2020 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-32664216

RESUMO

Ultrafast non-diffractive Bessel laser beams provide strong light confinement and show robust advantages for fabricating high-aspect-ratio nanoscale structures inside transparent materials. They take the form of nanoscale voids with typical diameters well below the wavelength and aspect ratio of more than 1000. Delivering 3D morphologies of such nanoscale voids is an important issue to evaluate the result for fabrication. However, the characterization of such laser-induced structures is a difficult task. Here, an accurate and time-saving tomography-like methodology is proposed and adopted for reconstructing the morphology of high-aspect-ratio nano-holes. The technique allows an accurate assertion of laser parameters and position on nano-structured features. The reconstructed configuration reveals that nanoholes morphologies have a close relationship with energy distribution in the focal region. It suggests that the configuration of micro-explosion can be controlled by laser energy deposition in the process of laser-matter interaction down to the nanoscale.

15.
Opt Express ; 27(11): 15701-15725, 2019 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-31163763

RESUMO

A fiber-based snapshot imaging spectrometer was developed with a maximum of 31853 (~188 x 170) spatial sampling and 61 spectral channels in the 450nm-750nm range. A compact, custom-fabricated fiber bundle was used to sample the object image at the input and create void spaces between rows at the output for dispersion. The bundle was built using multicore 6x6 fiber block ribbons. To avoid overlap between the cores in the direction of dispersion, we selected a subset of cores using two alternative approaches; a lenslet array and a photomask. To calibrate the >30000 spatial samples of the system, a rapid spatial calibration method was developed based on phase-shifting interferometry (PSI). System crosstalk and spectral resolution were also characterized. Preliminary hyperspectral imaging results of the Rice University campus landscape, obtained with the spectrometer, are presented to demonstrate the system's spectral imaging capability for distant scenes. The spectrum of different plant species with different health conditions, obtained with the spectrometer, was in accordance with reference instrument measurements. We also imaged Houston traffic to demonstrate the system's snapshot hyperspectral imaging capability. Potential applications of the system include terrestrial monitoring, land use, air pollution, water resources, and lightning spectroscopy. The fiber-based system design potentially allows tuning between spatial and spectral sampling to meet specific imaging requirements.

16.
Talanta ; 194: 585-590, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30609576

RESUMO

The limitations of electrochemical pH sensors have stimulated the development of optical pH sensing methods. In the method reported here, swellable pH-sensitive polymer particles are deposited on the interior surface of a silica hollow bottle resonator. As the pH of the buffer solution in contact with the particles increases, the refractive index of the particles decreases. As a result, whispering gallery modes with internal evanescent components shift in frequency as a function of pH. This shift is monitored by the throughput of tunable diode laser light coupled into the whispering gallery modes using a tapered fiber. Plots of selected mode frequencies vs. pH yielded sigmoid shaped titration curves similar to those obtained using turbidity to monitor refractive index changes of the particles as a function of pH. The response time of 10-15 s and best resolution of 0.06 pH unit represent improvements over previous optical pH sensing methods.

17.
Sci Rep ; 8(1): 9665, 2018 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-29941939

RESUMO

Cavitation in pure liquids and in liquids containing nanoparticles enables applications in mechanics, bio-medicine, and energy. Its evolution carries a significant interest. We describe the multiscale dynamic evolution of ultrafast-laser-induced cavitation in pure and gold-nanoparticles-doped liquids in one-dimensional geometries induced by non-diffractive ultrashort Bessel-Gauss laser beams. Covering the complete electronic and thermomechanical cycle, from the early plasma phase to bubble cavitation and collapse on ms timescales, we reconstitute, using time-resolved imaging with amplitude and phase sensitivity, the hydrodynamic phenomena concurring to bubble evolution. We indicate geometry-specific instabilities accompanying the collapse. The insertion of gold nanoparticles of 200 nm size has subtle effects in the process energetics. Albeit a moderate field enhancement minimizing the contribution to breakdown, the nanoparticles play a role in the overall relaxation dynamics of bubbles. The evolving bubble border in nanoparticles-containing liquids create a snow-plough effect that sweeps the nanoparticles at the gas liquid interface. This indicates that during the macroscopic cavity development, the nanoparticles were removed from the interaction region and dragged by the hydrodynamic movement. We thus shed light on the evolution of cavitation bubbles not triggered but perturbed by the presence of nanoparticles.

18.
Opt Express ; 26(2): 917-926, 2018 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-29401971

RESUMO

It is known that ultrashort laser welding of materials requires an accurate laser beam focusing and positioning onto the samples interface. This puts forward severe challenges for controlling the focus position particularly considering that the tightly focused Gaussian beam has a short, micron-sized Rayleigh range. Here we propose a large-focal-depth welding method to bond materials by using non-diffractive femtosecond laser Bessel beams. A zero-order Bessel beam is produced by an axicon and directly imaged on the interface between silicon and borosilicate glass to write welding lines, ensuring a non-diffractive length in the 500 µm range and micron-sized FWHM diameter. The focal-position tolerant zone for effective welding increases thus many-fold compared to traditional Gaussian beam welding. The shear joining strength of the sample welded by this method could be as high as 16.5 MPa. The Raman spectrum and element distribution analyses within the cross section of welding line reveal that substance mixing has occurred during laser irradiation, which is considered as the main reason for femtosecond laser induced bonding.

19.
Sci Rep ; 7(1): 16509, 2017 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-29184107

RESUMO

Optical feedback is often evoked in laser-induced periodic nanostructures. Visualizing the coupling between surfaces and light requires highly-resolved imaging methods. We propose in-situ structured-illumination-microscopy to observe ultrafast-laser-induced nanostructures during fabrication on metallic glass surfaces. This resolves the pulse-to-pulse development of periodic structures on a single irradiation site and indicates the optical feedback on surface topographies. Firstly, the quasi-constancy of the ripples pattern and the reinforcement of the surface relief with the same spatial positioning indicates a phase-locking mechanism that stabilizes and amplifies the ordered corrugation. Secondly, on sites with uncorrelated initial corrugation, we observe ripple patterns spatially in-phase. These feedback aspects rely on the electromagnetic interplay between the laser pulse and the surface relief, stabilizing the pattern in period and position. They are critically dependent on the space-time coherence of the exciting pulse. This suggests a modulation of energy according to the topography of the surface with a pattern phase imposed by the driving pulse. A scattering and interference model for ripple formation on surfaces supports the experimental observations. This relies on self-phase-stabilized far-field interaction between surface scattered wavelets and the incoming pulse front.

20.
Opt Express ; 24(11): 11558-68, 2016 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-27410083

RESUMO

The origin of high-spatial-frequency laser-induced periodic surface structures (HSFL) driven by incident ultrafast laser fields, with their ability to achieve structure resolutions below λ/2, is often obscured by the overlap with regular ripples patterns at quasi-wavelength periodicities. We experimentally demonstrate here employing defined surface topographies that these structures are intrinsically related to surface roughness in the nano-scale domain. Using Zr-based bulk metallic glass (Zr-BMG) and its crystalline alloy (Zr-CA) counterpart formed by thermal annealing from its glassy precursor, we prepared surfaces showing either smooth appearances on thermoplastic BMG or high-density nano-protuberances from randomly distributed embedded nano-crystallites with average sizes below 200 nm on the recrystallized alloy. Upon ultrashort pulse irradiation employing linearly polarized 50 fs, 800 nm laser pulses, the surfaces show a range of nanoscale organized features. The change of topology was then followed under multiple pulse irradiation at fluences around and below the single pulse threshold. While the former material (Zr-BMG) shows a specific high quality arrangement of standard ripples around the laser wavelength, the latter (Zr-CA) demonstrates strong predisposition to form high spatial frequency rippled structures (HSFL). We discuss electromagnetic scenarios assisting their formation based on near-field interaction between particles and field-enhancement leading to structure linear growth. Finite-difference-time-domain simulations outline individual and collective effects of nanoparticles on electromagnetic energy modulation and the feedback processes in the formation of HSFL structures with correlation to regular ripples (LSFL).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...