Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Protein J ; 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38980534

RESUMO

Spectroscopic studies on domains and peptides of large proteins are complicated because of the tendency of short peptides to form oligomers in aquatic buffers, but conjugation of a peptide with a carrier protein may be helpful. In this study we approved that a fragment of SK30 peptide from phospholipase A2 domain of VP1 Parvovirus B19 capsid protein (residues: 144-159; 164; 171-183; sequence: SAVDSAARIHDFRYSQLAKLGINPYTHWTVADEELLKNIK) turns from random coil to alpha helix in the acidic medium only in case if it had been conjugated with BSA (through additional N-terminal Cys residue, turning it into CSK31 peptide, and SMCC linker) according to CD-spectroscopy results. In contrast, unconjugated SK30 peptide does not undergo such shift because it forms stable oligomers connected by intermolecular antiparallel beta sheet, according to IR-spectroscopy, CD-spectroscopy, blue native gel electrophoresis and centrifugal ultrafiltration, as, probably, the whole isolated phospholipase domain of VP1 protein does. However, being a part of the long VP1 capsid protein, phospholipase domain may change its fold during the acidification of the medium in the endolysosome by the way of the formation of contacts between protonated His153 and Asp175, promoting the shift from random coil to alpha helix in its N-terminal part. This study opens up a perspective of vaccine development, since rabbit polyclonal antibodies against the conjugate of CSK31 peptide with BSA, in which the structure of the second alpha helix from the phospholipase A2 domain should be reproduced, can bind epitopes of the complete recombinant unique part of VP1 Parvovirus B19 capsid (residues: 1-227).

2.
Protein Pept Lett ; 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38053353

RESUMO

BACKGROUND: Binding appropriate cellular receptors is a crucial step of a lifecycle for any virus. Structure of receptor-binding domain for a viral surface protein has to be determined before the start of future drug design projects. OBJECTIVE: Investigation of pH-induced changes in the secondary structure for a capsid peptide with loss of function mutation can shed some light on the mechanism of entrance. METHODS: Spectroscopic methods were accompanied by electrophoresis, ultrafiltration, and computational biochemistry. RESULTS: In this study, we showed that a peptide from the receptor-binding domain of Parvovirus B19 VP1 capsid (residues 13-31) is beta-structural at pH=7.4 in 0.01 M phosphate buffer, but alpha- helical at pH=5.0, according to the circular dichroism (CD) spectroscopy results. Results of infra- red (IR) spectroscopy showed that the same peptide exists in both alpha-helical and beta-structural conformations in partial dehydration conditions both at pH=7.4 and pH=5.0. In contrast, the peptide with Y20W mutation, which is known to block the internalization of the virus, forms mostly alpha-helical conformation in partial dehydration conditions at pH=7.4. According to our hypothesis, an intermolecular antiparallel beta structure formed by the wild-type peptide in its tetramers at pH=7.4 is the prototype of the similar intermolecular antiparallel beta structure formed by the corresponding part of Parvovirus B19 receptor-binding domain with its cellular receptor (AXL). CONCLUSION: Loss of function Y20W substitution in VP1 capsid protein prevents the shift into the beta-structural state by way of alpha helix stabilization and the decrease of its ability to turn into the disordered state.

3.
Biosystems ; 231: 104970, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37442364

RESUMO

Full-length nucleotide sequences of avian influenza A virus neuraminidase coding region (20,631 sequences) were analyzed and compared with those isolated from viruses infecting human and swine (63,750 sequences). If in fourfold degenerate sites there is asymmetric A-bias that may be more or less asymmetric depending on the type of neuraminidase and the host, than in twofold degenerate sites from third codon positions there is a strong asymmetric U-bias in coding regions of N4, N5, and N8 isolated from viruses infecting birds, as well as in those of N1 and N2 isolated from viruses infecting human, swine, and birds, while in coding regions of N9 isolated from birds, there is surprisingly strong C-bias, and in sequences of N3, N6, and N7 the usage of C is quite close to the level of U. Revealed stabilization of both U and C in twofold degenerate sites is the evidence of frequent changes in mutational pressure direction. Asymmetric mutational pressure was one of the sources of amino acid replacements that resulted in an equal percentage of sites with appeared and disappeared linear B-cell epitopes in N1, N2, N4, and N5 (33.62-35.33% vs. 32.41-36.45%, respectively), and controlled by the immune pressure it resulted in a stronger tendency to disappear for B-cell epitopes of N3, N6, N7, N8, and N9 of avian viruses (8.74-28.77% vs. 28.96-38.89%). The lack of correlation between nucleotide usages in fourfold and twofold degenerate sites for three nucleotides, except U, is a strong evidence of mutational pressure theory.


Assuntos
Vírus da Influenza A , Neuraminidase , Animais , Humanos , Suínos , Neuraminidase/genética , Neuraminidase/química , Epitopos de Linfócito B/genética , Mutação , Vírus da Influenza A/genética , Aves
4.
Protein J ; 41(2): 245-259, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35348971

RESUMO

An interplay between monomeric and dimeric forms of human epidermal growth factor (EGF) affecting its interaction with EGF receptor (EGFR) is poorly understood. While EGF dimeric structure was resolved at pH 8.1, the possibility of EGF dimerization under physiological conditions is still unclear. This study aimed to describe the oligomeric state of EGF in a solution at physiological pH value. With centrifugal ultrafiltration followed by blue native gel electrophoresis, we showed that synthetic human EGF in a solution at a concentration of 0.1 mg/ml exists mainly in the dimeric form at pH 7.4 and temperature of 37 °C, although a small fraction of its monomers was also observed. Based on bioinformatics predictions, we introduced the D46G substitution to examine if EGF C-terminal part is directly involved in the intermolecular interface formation of the observed dimers. We found a reduced ability of the resulting EGF D46G dimers to dissociate at temperatures up to 50 °C. The D46G substitution also increased the intermolecular antiparallel ß-structure content within the EGF peptide in a solution according to the CD spectra analysis that was confirmed by HATR-FTIR results. Additionally, the energy transfer between Tyr and Trp residues was detected by fluorescence spectroscopy for the EGF D46G mutant, but not for the native EGF. This allowed us to suggest the elongation and rearrangement of the intermolecular ß-structure that leads to the observed stabilization of EGF D46G dimers. The results imply EGF dimerization under physiological pH value and temperature and the involvement of EGF C-terminal part in this process.


Assuntos
Fator de Crescimento Epidérmico , Polímeros , Dimerização , Fator de Crescimento Epidérmico/genética , Fator de Crescimento Epidérmico/metabolismo , Humanos , Espectrometria de Fluorescência
5.
Front Microbiol ; 11: 559165, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33072018

RESUMO

Within 4 months of the ongoing COVID-19 pandemic caused by SARS-CoV-2, more than 250 nucleotide mutations have been detected in ORF1ab of the virus isolated from infected persons from different parts of the globe. These observations open up an obvious question about the rate and direction of mutational pressure for further vaccine and therapeutics designing. In this study, we did a comparative analysis of ORF1a and ORF1b by using the first isolate (Wuhan strain) as the parent sequence. We observed that most of the nucleotide mutations are C to U transitions. The rate of synonymous C to U transitions is significantly higher than the rate of non-synonymous ones, indicating negative selection on amino acid substitutions. Further, trends in nucleotide usage bias have been investigated in 49 coronaviruses species. A strong bias in nucleotide usage in fourfold degenerate sites toward uracil residues is seen in ORF1ab of all the studied coronaviruses: both in the ORF1a and in the ORF1b translated thanks to the programmed ribosomal frameshifting that has an efficiency of 14 - 45% in different species. A more substantial mutational U-pressure is observed in ORF1a than in ORF1b perhaps because ORF1a is translated more frequently than ORF1b. Mutational U-pressure is there even in ORFs that are not translated from genomic RNA plus strands, but the bias is weaker than in ORF1ab. Unlike other nucleotide mutations, mutational U-pressure caused by cytosine deamination, mostly occurring during the RNA plus strand replication and also translation, cannot be corrected by the proof-reading machinery of coronaviruses. The knowledge generated on the mutational U-pressure that becomes stronger during translation of viral RNA plus strands has implications for vaccine and nucleoside analog development for treating COVID-19 and other coronavirus infections.

6.
Eur Biophys J ; 48(6): 523-537, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31203415

RESUMO

In this study we examined microenvironment of Trp residues in "dry" sets of nonhomologous proteins that belong to four structural classes, as well as in a "wet" set. In silico experiments showed that residues of Trp demonstrate higher surface accessibility in proteins of "alpha/beta" class where they are rarely included in beta strands. However, this feature has not caused "red" shift in fluorescence spectra in "alpha/beta" proteins in vitro, since there are several factors that should be combined together to cause it: high surface accessibility and high hydrophilicity of the microenvironment, the presence of destabilizing contacts with Asp, Asn, Leu, and multiple Tyr residues, as well as the lack of stabilizing interactions with Arg, Thr, and Pro. The occurrence of Trp residues has the highest value in beta-structural proteins, while they are not involved in aromatic-aromatic interactions with each other as frequently, as they do in proteins of "alpha + beta" class in which Trp residues are overrepresented near each other in the primary sequence. That is why the deformation of circular dichroism spectra because of Trp-Trp interactions is expected to be more frequent in proteins of "alpha + beta" class. In all four classes of proteins Trp residues are involved in long-range interactions with some hydrophobic (Leu, Val, Ile) and aromatic residues (Trp, Phe, and Tyr) more frequently than it is expected. They are involved in long-range interactions with some hydrophilic residues (Asp, Glu, Ser, and Lys) rarely than it is expected. Short-range interactions between Arg and Trp are overrepresented just in alpha-helical proteins.


Assuntos
Dicroísmo Circular , Proteínas/química , Espectrometria de Fluorescência , Triptofano , Interações Hidrofóbicas e Hidrofílicas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...