Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
J Comp Neurol ; 465(3): 335-48, 2003 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-12966559

RESUMO

Studies of sensory pathways in several species indicate that the extent and form of reorganization resulting from deafferentation early in life vs. adulthood are not the same. The reasons for such differences are not well understood. To gain further insight into age-dependent mechanisms of reorganization, this study compared the consequences of neonatal vs. adult forelimb amputation in rats at multiple levels of the sensory pathway, including primary somatosensory cortex, brainstem, and dorsal root ganglia. At the cortical level, the average area of the functional forelimb-stump representation from rats amputated as adults was significantly smaller (P < 0.05) than that of neonatally amputated rats (4.3 +/- 1.3 mm(2) vs. 6.6 +/- 1.5 mm(2), respectively). At the brainstem level, neonatally amputated rat cuneate neurons possessed the following responsivities: 20% stump responsive, 40% responsive to both stump and hindlimb, 30% responsive to another body region, and 10% unresponsive. In contrast, cuneate neurons of adult amputated rats were 70% stump responsive, 2% responsive to both stump and hindlimb, and 30% unresponsive. A significantly (P < 0.001) greater percentage of the C(6)-C(8) dorsal root ganglia neurons of adult amputated rats were unresponsive to peripheral stimulation vs. neurons from neonatally amputated rats (48% vs. 16%, respectively). These results indicate that the reorganization that occurs in response to forelimb amputation at birth vs. adulthood is distinctly different at each of these levels of the dorsal column-medial lemniscal pathway. Possible mechanisms to account for these differences are considered.


Assuntos
Amputação Cirúrgica/métodos , Mapeamento Encefálico/métodos , Membro Anterior/crescimento & desenvolvimento , Neurônios Aferentes/fisiologia , Córtex Somatossensorial/crescimento & desenvolvimento , Potenciais de Ação/fisiologia , Fatores Etários , Animais , Animais Recém-Nascidos , Feminino , Masculino , Ratos , Ratos Sprague-Dawley
3.
J Neurophysiol ; 90(3): 1842-51, 2003 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12773492

RESUMO

Rats that sustain forelimb removal on postnatal day (P) 0 exhibit numerous multi-unit recording sites in the forelimb-stump representation of primary somatosensory cortex (SI) that also respond to hindlimb stimulation when cortical GABAA+B receptors are blocked. Most of these hindlimb inputs originate in the medial SI hindlimb representation. Although many forelimb-stump sites in these animals respond to hindlimb stimulation, very few respond to stimulation of the face (vibrissae or lower jaw), which is represented in SI just lateral to the forelimb. The lateral to medial development of SI may influence the capacity of hindlimb (but not face) inputs to "invade" the forelimb-stump region in neonatal amputees. The SI forelimb-stump was mapped in adult (>60 days) rats that had sustained amputation on embryonic day (E) 16, on P0, or during adulthood. GABA receptors were blocked and subsequent mapping revealed increases in nonstump inputs in E16 and P0 amputees: fetal amputees exhibited forelimb-stump sites responsive to face (34%), hindlimb (10%), and both (22%); neonatal amputees exhibited 10% face, 39% hindlimb, and 5% both; adult amputees exhibited 10% face, 5% hindlimb, and 0% both, with approximately 80% stump-only sites. These results indicate age-dependent differences in receptive-field reorganization of the forelimb-stump representation, which may reflect the spatiotemporal development of SI. Results from cobalt chloride inactivation of the SI vibrissae region and electrolesioning of the dysgranular cortex suggest that normally suppressed vibrissae inputs to the SI forelimb-stump area originate in the SI vibrissae region and synapse in the dysgranular cortex.


Assuntos
Cotos de Amputação/fisiopatologia , Feto/embriologia , Feto/fisiologia , Membro Anterior/inervação , Córtex Somatossensorial/fisiologia , Potenciais de Ação/fisiologia , Animais , Animais Recém-Nascidos , Estimulação Elétrica/métodos , Feminino , Membro Anterior/embriologia , Membro Anterior/crescimento & desenvolvimento , Gravidez , Ratos , Receptores de GABA/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...