Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(4): e0293703, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38630694

RESUMO

Many oncology antibody-drug conjugates (ADCs) have failed to demonstrate efficacy in clinic because of dose-limiting toxicity caused by uptake into healthy tissues. We developed an approach that harnesses ADC affinity to broaden the therapeutic index (TI) using two anti-mesenchymal-epithelial transition factor (MET) monoclonal antibodies (mAbs) with high affinity (HAV) or low affinity (LAV) conjugated to monomethyl auristatin E (MMAE). The estimated TI for LAV-ADC was at least 3 times greater than the HAV-ADC. The LAV- and HAV-ADCs showed similar levels of anti-tumor activity in the xenograft model, while the 111In-DTPA studies showed similar amounts of the ADCs in HT29 tumors. Although the LAV-ADC has ~2-fold slower blood clearance than the HAV-ADC, higher liver toxicity was observed with HAV-ADC. While the SPECT/CT 111In- and 124I- DTPA findings showed HAV-ADC has higher accumulation and rapid clearance in normal tissues, intravital microscopy (IVM) studies confirmed HAV mAb accumulates within hepatic sinusoidal endothelial cells while the LAV mAb does not. These results demonstrated that lowering the MET binding affinity provides a larger TI for MET-ADC. Decreasing the affinity of the ADC reduces the target mediated drug disposition (TMDD) to MET expressed in normal tissues while maintaining uptake/delivery to the tumor. This approach can be applied to multiple ADCs to improve the clinical outcomes.


Assuntos
Imunoconjugados , Radioisótopos do Iodo , Humanos , Animais , Preparações Farmacêuticas , Células Endoteliais/metabolismo , Linhagem Celular Tumoral , Imunoconjugados/uso terapêutico , Ácido Pentético , Ensaios Antitumorais Modelo de Xenoenxerto
2.
AAPS J ; 20(6): 103, 2018 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-30255287

RESUMO

Among the numerous antibody-drug conjugate (ADC) clinical candidates, one of the most prevalent types utilizes the interchain cysteines in antibodies to conjugate auristatin via a maleimide-containing linker. In this class of ADCs, there are a paucity of systematic studies characterizing how IgG subclass influences the biophysical properties and in vivo pharmacokinetics of the ADC molecules. In the current investigation, we studied cysteine-conjugated ADCs using a model system consisting of human IgG1, IgG2, and IgG4 antibodies with the same variable region. Our findings identified some unforeseen differences among the three ADCs. Drug conjugation profiling by LC-MS revealed that 50% of inter heavy-light chain disulfide bonds are disrupted to conjugate drugs in IgG1 antibody while only 10% in IgG2 antibody and 20% in IgG4 antibody. The solution behavior of the ADCs was interrogated in concentrating experiments and diffusion interaction parameter measurements. We found that drug conjugation affected the solution property of the three antibodies differently, with the IgG2-based ADC having the most increased propensity to aggregate. Rat PK studies using a sensitive LC-MS-based bioanalytical method showed that the IgG1-based ADC has poor peripheral linker-payload stability while the IgG2- and IgG4-based ADCs are stable. The conjugate stability of the IgG2-based ADC was further confirmed in a cynomolgus monkey PK study. Overall, the IgG2-based ADC exhibited the best PK/conjugate stability but also the most deterioration in stability among the three ADCs. Our findings provide important information and present multifactorial considerations for the selection of IgG subclass during ADC drug discovery when employing stochastic cysteine conjugation.


Assuntos
Anticorpos Monoclonais/farmacocinética , Cisteína/química , Imunoconjugados/farmacocinética , Imunoglobulina G/farmacologia , Região Variável de Imunoglobulina/farmacologia , Animais , Anticorpos Monoclonais/administração & dosagem , Anticorpos Monoclonais/química , Células CHO , Cricetulus , Estabilidade de Medicamentos , Imunoconjugados/administração & dosagem , Imunoconjugados/química , Imunoglobulina G/química , Região Variável de Imunoglobulina/química , Macaca fascicularis , Masculino , Ratos , Solubilidade
3.
Protein Sci ; 14(5): 1375-9, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15802642

RESUMO

Nanospray time-of-flight mass spectrometry has been used to study the assembly of the heptamer of the Escherichia coli cochaperonin protein GroES, a system previously described as a monomer-heptamer equilibrium. In addition to the monomers and heptamers, we have found measurable amounts of dimers and hexamers, the presence of which suggests the following mechanism for heptamer assembly: 2 Monomers <--> Dimer; 3 Dimers <--> Hexamer; Hexamer + Monomer <--> Heptamer. Equilibrium constants for each of these steps, and an overall constant for the Monomer <--> Heptamer equilibrium, have been estimated from the data. These constants imply a standard free-energy change, DeltaG(0), of about 9 kcal/mol for each contact surface formed between GroES subunits, except for the addition of the last subunit, where DeltaG(0) = 6 kcal/mol. This lower value probably reflects the loss of entropy when the heptamer ring is formed. These experiments illustrate the advantages of electrospray mass spectrometry as a method of measuring all components of a multiple equilibrium system.


Assuntos
Chaperonina 10/química , Escherichia coli/química , Espectrometria de Massas/métodos , Dimerização
4.
J Biol Chem ; 278(37): 35435-43, 2003 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-12824188

RESUMO

The citrate synthase of Escherichia coli is an example of a Type II citrate synthase, a hexamer that is subject to allosteric inhibition by NADH. In previous crystallographic work, we defined the NADH binding sites, identifying nine amino acids whose side chains were proposed to make hydrogen bonds with the NADH molecule. Here, we describe the functional properties of nine sequence variants, in which these have been replaced by nonbonding residues. All of the variants show some changes in NADH binding and inhibition and small but significant changes in kinetic parameters for catalysis. In three cases, Y145A, R163L, and K167A, NADH inhibition has become extremely weak. We have used nanospray/time-of-flight mass spectrometry, under non-denaturing conditions, to show that two of these, R163L and K167A, do not form hexamers in response to NADH binding, unlike the wild type enzyme. One variant, R109L, shows tighter NADH binding. We have crystallized this variant and determined its structure, with and without bound NADH. Unexpectedly, the greatest structural changes in the R109L variant are in two regions outside the NADH binding site, both of which, in wild type citrate synthase, have unusually high mobilities as measured by crystallographic thermal factors. In the R109L variant, both regions (residues 260 -311 and 316-342) are much less mobile and have rearranged significantly. We argue that these two regions are elements in the path of communication between the NADH binding sites and the active sites and are centrally involved in the regulatory conformational change in E. coli citrate synthase.


Assuntos
Citrato (si)-Sintase/química , Citrato (si)-Sintase/metabolismo , Escherichia coli/enzimologia , NAD/metabolismo , Substituição de Aminoácidos , Sítios de Ligação , Cristalografia por Raios X , Variação Genética , Ligação de Hidrogênio , Cinética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Eletricidade Estática , Termodinâmica
5.
Biochemistry ; 42(19): 5555-65, 2003 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-12741811

RESUMO

Study of the hexameric and allosterically regulated citrate synthases (type II CS) provides a rare opportunity to gain not only an understanding of a novel allosteric mechanism but also insight into how such properties can evolve from an unregulated structural platform (the dimeric type I CS). To address both of these issues, we have determined the structure of the complex of NADH (a negative allosteric effector) with the F383A variant of type II Escherichia coli CS. This variant was chosen because its kinetics indicate it is primarily in the T or inactive allosteric conformation, the state that strongly binds to NADH. Our structural analyses show that the six NADH binding sites in the hexameric CS complex are located at the interfaces between dimer units such that most of each site is formed by one subunit, but a number of key residues are drawn from the adjacent dimer. This arrangement of interactions serves to explain why NADH allosteric regulation is a feature only of hexameric type II CS. Surprisingly, in both the wild-type enzyme and the NADH complex, the two subunits of each dimer within the hexameric conformation are similar but not identical in structure, and therefore, while the general characteristics of NADH binding interactions are similar in each subunit, the details of these are somewhat different between subunits. Detailed examination of the observed NADH binding sites indicates that both direct charged interactions and the overall cationic nature of the sites are likely responsible for the ability of these sites to discriminate between NADH and NAD(+). A particularly novel characteristic of the complex is the horseshoe conformation assumed by NADH, which is strikingly different from the extended conformation found in its complexes with most proteins. Sequence homology studies suggest that this approach to binding NADH may arise out of the evolutionary need to add an allosteric regulatory function to the base CS structure. Comparisons of the amino acid sequences of known type II CS enzymes, from different Gram-negative bacteria taxonomic groups, show that the NADH-binding residues identified in our structure are strongly conserved, while hexameric CS molecules that are insensitive to NADH have undergone key changes in the sequence of this part of the protein.


Assuntos
Citrato (si)-Sintase/química , Citrato (si)-Sintase/metabolismo , NAD/metabolismo , Regulação Alostérica , Sítio Alostérico/genética , Sequência de Aminoácidos , Citrato (si)-Sintase/classificação , Citrato (si)-Sintase/genética , Cristalografia por Raios X , Dimerização , Escherichia coli/enzimologia , Escherichia coli/genética , Evolução Molecular , Variação Genética , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Estrutura Quaternária de Proteína , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...