Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 296: 100402, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33571523

RESUMO

Beta-amyloid (Aß) has been recognized as an early trigger in the pathogenesis of Alzheimer's disease (AD) leading to synaptic and cognitive impairments. Aß can alter neuronal signaling through interactions with nicotinic acetylcholine receptors (nAChRs), contributing to synaptic dysfunction in AD. The three major nAChR subtypes in the hippocampus are composed of α7-, α4ß2-, and α3ß4-nAChRs. Aß selectively affects α7- and α4ß2-nAChRs, but not α3ß4-nAChRs in hippocampal neurons, resulting in neuronal hyperexcitation. However, how nAChR subtype selectivity for Aß affects synaptic function in AD is not completely understood. Here, we showed that Aß associated with α7- and α4ß2-nAChRs but not α3ß4-nAChRs. Computational modeling suggested that two amino acids in α7-nAChRs, arginine 208 and glutamate 211, were important for the interaction between Aß and α7-containing nAChRs. These residues are conserved only in the α7 and α4 subunits. We therefore mutated these amino acids in α7-containing nAChRs to mimic the α3 subunit and found that mutant α7-containing receptors were unable to interact with Aß. In addition, mutant α3-containing nAChRs mimicking the α7 subunit interact with Aß. This provides direct molecular evidence for how Aß selectively interacted with α7- and α4ß2-nAChRs, but not α3ß4-nAChRs. Selective coactivation of α7- and α4ß2-nAChRs also sufficiently reversed Aß-induced AMPA receptor dysfunction, including Aß-induced reduction of AMPA receptor phosphorylation and surface expression in hippocampal neurons. Moreover, costimulation of α7- and α4ß2-nAChRs reversed the Aß-induced disruption of long-term potentiation. These findings support a novel mechanism for Aß's impact on synaptic function in AD, namely, the differential regulation of nAChR subtypes.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Hipocampo/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Fragmentos de Peptídeos/farmacologia , Receptores Nicotínicos/metabolismo , Potenciais Sinápticos/efeitos dos fármacos , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/farmacologia , Experimentação Animal , Animais , Células Cultivadas , Células HEK293 , Hipocampo/metabolismo , Hipocampo/patologia , Humanos , Potenciação de Longa Duração , Camundongos , Neurônios/metabolismo , Neurônios/patologia
2.
Neurobiol Aging ; 84: 166-177, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31629115

RESUMO

Beta-amyloid (Aß) peptide accumulation has long been implicated in the pathogenesis of Alzheimer's disease (AD). Hippocampal network hyperexcitability in the early stages of the disease leads to increased epileptiform activity and eventually cognitive decline. We found that acute application of 250 nM soluble Aß42 oligomers increased Ca2+ activity in hippocampal neurons in parallel with a significant decrease in activity in Aß42-treated interneurons. A potential target of Aß42 is the nicotinic acetylcholine receptor (nAChR). Three major subtypes of nAChRs (α7, α4ß2, and α3ß4) have been reported in the human hippocampus. Simultaneous inhibition of both α7 and α4ß2 nAChRs mimicked the Aß42 effects on both excitatory and inhibitory neurons. However, inhibition of all 3 subtypes showed the opposite effect. Importantly, simultaneous activation of α7 and α4ß2 nAChRs was required to reverse Aß42-induced neuronal hyperexcitation. We suggest co-activation of α7 and α4ß2 nAChRs is required to reverse Aß42-induced Ca2+ hyperexcitation.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Cálcio/metabolismo , Receptores Nicotínicos/metabolismo , Doença de Alzheimer , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...