Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cortex ; 89: 156-168, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27890324

RESUMO

Learning and the formation of memory are reflected in various memory systems in the human brain such as the hippocampus based declarative memory system and the striatum-cortex based system involved in motor sequence learning. It is a matter of debate how both memory systems interact in humans during learning and consolidation and how this interaction is influenced by sleep. We studied the effect of an acute dysfunction of hippocampal CA1 neurons on the acquisition (on-line condition) and off-line changes of a motor skill in patients with a transient global amnesia (TGA). Sixteen patients (68 ± 4.4 yrs) were studied in the acute phase and during follow-up using a declarative and procedural test, and were compared to controls. Acute TGA patients displayed profound deficits in all declarative memory functions. During the acute amnestic phase, patients were able to acquire the motor skill task reflected by increasing finger tapping speed across the on-line condition, albeit to a lesser degree than during follow-up or compared to controls. Retrieval two days later indicated a greater off-line gain in motor speed in patients than controls. Moreover, this gain in motor skill performance was negatively correlated to the declarative learning deficit. Our results suggest a differential interaction between procedural and declarative memory systems during acquisition and consolidation of motor sequences in older humans. During acquisition, hippocampal dysfunction attenuates fast learning and thus unmasks the slow and rigid learning curve of striatum-based procedural learning. The stronger gains in the post-consolidation condition in motor skill in CA1 lesioned patients indicate a facilitated consolidation process probably occurring during sleep, and suggest a competitive interaction between the memory systems. These findings might be a reflection of network reorganization and plasticity in older humans and in the presence of CA1 hippocampal pathology.


Assuntos
Amnésia Global Transitória/fisiopatologia , Aprendizagem/fisiologia , Destreza Motora/fisiologia , Idoso , Amnésia Global Transitória/psicologia , Feminino , Humanos , Masculino , Memória/fisiologia , Rememoração Mental/fisiologia , Pessoa de Meia-Idade , Testes Neuropsicológicos , Desempenho Psicomotor/fisiologia , Sono/fisiologia
2.
Neuroimage ; 122: 52-64, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-26244275

RESUMO

The fast and slow learning stages of motor sequence learning are suggested to be realized through plasticity in a distributed cortico-striato-cerebellar network. To better understand the causal interactions within this network in the different phases of motor sequence learning, we investigated the effective connectivity within this network during encoding (Day 1) and after consolidation (Day 2) of a serial reaction time task. Using Dynamic Causal Modelling of fMRI data, we found general changes in network connections reflected in altered input nodes and endogenous connections when comparing the early and fast learning session to the late and slow learning session. Whereas encoding of a motor memory early on modulated several connections in a distributed network, slow learning resulted in a pruned network. More specifically, we found a negative modulation of connections from left M1 to right cerebellum, right premotor cortex to left cerebellum, as well as backward connections from putamen to cerebellum bilaterally in the encoding session. While connections during pre-sleep were significantly modulated by learning per se (i.e., specifically modulated by performance on sequence conditions), the connections observed after sleep were rather modulated by general performance (i.e., modulated by performance on both sequence and random conditions). A forward connection from left cerebellum to right putamen was found to be consistent across participants for the sequence condition only during slow learning. Together these findings suggest that whereas encoding in the fast learning phase requires plasticity in several connections implementing both motor and perceptual learning components, slow learning is mediated through connectivity from left cerebellum to right putamen.


Assuntos
Cerebelo/fisiologia , Córtex Cerebral/fisiologia , Corpo Estriado/fisiologia , Aprendizagem/fisiologia , Consolidação da Memória/fisiologia , Desempenho Psicomotor/fisiologia , Adulto , Teorema de Bayes , Mapeamento Encefálico , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Modelos Neurológicos , Atividade Motora , Rede Nervosa/fisiologia , Vias Neurais/fisiologia , Tempo de Reação , Sono/fisiologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...