Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 14(19)2022 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-36236165

RESUMO

The present work investigates, for the first time, the synthesis and properties of some nanocomposite (NC) hydrogels obtained by the aqueous solution free radical polymerization of N-vinylpyrrolidone (NVP) in the presence of Laponite XLG (XLG) as a crosslinker, in comparison with the corresponding hydrogels prepared by using two conventional crosslinking divinyl monomers: N,N'-methylenebisacrylamide (MBA) and tri(ethylene glycol) divinyl ether (DVE). The structure and properties of the hydrogels were studied by FTIR, TEM, XRD, SEM, swelling and rheological and compressive mechanical measurements. The results showed that DVE and XLG are much better crosslinking agents for the synthesis of PNVP hydrogels than MBA, leading to larger gel fractions and more homogeneous network hydrogels. The hydrogels crosslinked by either DVE or XLG displayed comparable viscoelastic and compressive mechanical properties under the experimental conditions employed. The properties of the XLG-crosslinked hydrogels steadily improved as the clay content increased. The addition of XLG as a second crosslinker together with a divinyl monomer strongly enhanced the material properties in comparison with the hydrogels crosslinked by only one of the crosslinkers involved. The FTIR analyses suggested that the crosslinking of the NC hydrogels was the result of two different interactions occurring between the clay platelets and the PNVP chains. Laponite XLG displayed a uniform distribution within the NC hydrogels, the clay being mostly exfoliated. However, a small number of platelet agglomerations were still present. The PNVP hydrogels described here may find applications for water purification and in the biomedical field as drug delivery systems or wound dressings.

2.
Materials (Basel) ; 14(22)2021 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-34832457

RESUMO

Starting from natural raw materials, cements based calcium sulphoaluminate (CSA) clinkers have been successfully obtained as an eco-friendly alternative to ordinary Portland cement. CSA-based cements with ye'elimite as the main phase have been produced over the years and are widely used today. In this regard, the present paper considers the study of hydration processes for CSA pastes prepared with a water/cement ratio of 0.5 according to the EN-197 standard and their characterization by thermal analysis (DTA-TG), X-ray diffraction analysis (XRD), and scanning electron microscopy coupled with energy dispersive X-ray spectroscopy (SEM-EDX). A mechanical strength of 60.9 MPa was the greatest achieved for mortars hardened for 28 days.

3.
Materials (Basel) ; 13(23)2020 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-33266102

RESUMO

This article presents the influence of three additions i.e., hydroxyethyl methyl cellulose (HEMC), sodium bicarbonate and flue gas desulfurization (FGD) gypsum on the porosity of gypsum-based materials. The specific microstructure for a material with good thermal insulation properties i.e., numerous closed pores distributed in the binding matrix, was achieved using HEMC (0.3 wt.%) and sodium bicarbonate (0.5-2 wt.%). The addition of HEMC to the gypsum binder determines, as expected, an increase of the porosity due to its ability to stabilize entrained air. In the case of a sodium bicarbonate addition, the pores are formed in the binding matrix due to the entrapment of the gas (CO2) generated by its reaction. Sodium bicarbonate addition delays the setting of gypsum binder therefore in this study FGD gypsum (waste produced in the desulfurization process of combustion gases generated in power plants) was also added to the mixture to mitigate this negative effect. The decrease of geometrical density (up to 13%, in correlation with the additive nature and dosage) correlated with the increase of the porosity, determines, as expected, the decrease of flexural and compressive strengths (33-75%), but improves the thermal properties i.e., decreases the thermal conductivity (9-18%).

4.
Nanomaterials (Basel) ; 10(1)2020 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-31936775

RESUMO

In this paper, ZnO and Co2+/Mg2+-doped ZnO thin films on TiAlV alloy substrates were obtained. The films were deposited by spin coating of sol-gel precursor solutions and thermally treated at 600 °C for 2 h, in air and slow cooled. The doping ions concentration was 1.0 mol%. The study's aim was to obtain implantable metallic materials with improved biocompatibility and antibacterial qualities. The characteristics of the thin films were assessed from the point of view of microstructure, morphology, wetting properties, antibacterial activity and biological response in the presence of amniotic fluid stem cells (AFSC). The results proved that all deposited samples were nanostructured, suggesting a very good antibacterial effect and proving to be suitable supports for cellular adhesion and proliferation. All properties also depended on the doping ion nature.

5.
Mater Sci Eng C Mater Biol Appl ; 33(3): 1307-14, 2013 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-23827576

RESUMO

Crosslinked hydrogels with well-defined chemical structures and characteristics were prepared through the reaction between diepoxy-terminated poly(ethylene glycol)s of various molecular weights and aliphatic polyamines of different hydrocarbon chain length and functionalities, and the influence of some network parameters (molecular weight between crosslinking points, crosslinking degree, hydrophobic character) upon the absorption and release of drugs of different capacity to interact with the polymer chains was comparatively investigated. Diclofenac sodium (DCFNa) and 5-fluorouracil (5FU) were used as model drugs, based on their dissimilar hydrophobic character and ability of DCFNa to form crown ether-like complexes with PEG chains through the sodium cation. The experiments showed that the most important interactions occurring in these systems were mainly the hydrophobic ones and to a lesser extent the complexation of the Na(+) ion by the PEG chains. Both of them were in favor of DCFNa, resulting in a larger incorporation and a slower release of this one in comparison with 5FU. For both drugs, loading was larger for hydrogels with shorter PEG chains and/or crosslinked with amines with longer hydrocarbon chain or higher functionality. Drug release tests showed a lower rate for stronger drug-network interactions in agreement with the absorption experiments.


Assuntos
Reagentes de Ligações Cruzadas/química , Diclofenaco/farmacologia , Compostos de Epóxi/química , Fluoruracila/farmacologia , Hidrogéis/química , Poliaminas/química , Polietilenoglicóis/química , Absorção , Diclofenaco/química , Fluoruracila/química , Microscopia Eletrônica de Varredura , Peso Molecular , Espectroscopia de Infravermelho com Transformada de Fourier
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...