Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Struct Biol ; 216(3): 108112, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39069032

RESUMO

Viruses often use ion channel proteins to initialise host infections. Defects in ion channel proteins are also linked to several metabolic disorders in humans. In that instance, modulation of ion channel activities becomes central to development of antiviral therapies and drug design. Kesv, a potassium-selective ion channel protein expressed by Ectocarpus siliculosus virus (EsV), possesses remarkable properties which can help to characterise the molecular basis of the functional processes relevant to virus biology and human physiology. The small structural features of this ion channel could serve as a fundamental primer to study more complex ion channels from humans. Therefore, in spite of their evolutionary distance, the potential link between viral and human ion channel proteins could provide opportunities for therapeutic and biotechnological applications.


Assuntos
Proteínas Virais , Humanos , Canais Iônicos/química , Canais Iônicos/genética , Canais Iônicos/metabolismo , Relação Estrutura-Atividade , Proteínas Virais/química , Proteínas Virais/metabolismo , Proteínas Virais/genética
2.
J Med Chem ; 67(8): 6384-6396, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38574272

RESUMO

Peptide deformylase (PDF) is involved in bacterial protein maturation processes. Originating from the interest in a new antibiotic, tremendous effort was put into the refinement of PDF inhibitors (PDFIs) and their selectivity. We obtained a full NMR backbone assignment the emergent additional protein backbone resonances of ecPDF 1-147 in complex with 2-(5-bromo-1H-indol-3-yl)-N-hydroxyacetamide (2), a potential new structural scaffold for more selective PDFIs. We also determined the complex crystal structures of E. coli PDF (ecPDF fl) and 2. Our structure suggests an alternative ligand conformation within the protein, a possible starting point for further selectivity optimization. The orientation of the second ligand conformation in the crystal structure points toward a small region of the S1' pocket, which differs between bacterial PDFs and human PDF. Moreover, we analyzed the binding mode of 2 via NMR TITAN line shape analysis, revealing an induced fit mechanism.


Assuntos
Amidoidrolases , Antibacterianos , Escherichia coli , Amidoidrolases/antagonistas & inibidores , Amidoidrolases/metabolismo , Amidoidrolases/química , Antibacterianos/farmacologia , Antibacterianos/química , Escherichia coli/enzimologia , Escherichia coli/efeitos dos fármacos , Cristalografia por Raios X , Sítios de Ligação , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Modelos Moleculares , Humanos , Relação Estrutura-Atividade
3.
ChemMedChem ; 19(6): e202300538, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38057137

RESUMO

The lack of new antibiotics and the rapidly rising number of pathogens resistant to antibiotics pose a serious problem to mankind. In bacteria, the cell membrane provides the first line of defence to antibiotics by preventing them from reaching their molecular target. To overcome this entrance barrier, it has been suggested[1] that small Gold-Nanoparticles (AuNP) could possibly function as drug delivery systems for antibiotic ligands. Using actinonin-based ligands, we provide here proof-of-principle of AuNP functionalisation, the capability to bind and inhibit the target protein of the ligand, and the possibility to selectively release the antimicrobial payload. To this end, we successfully synthesised AuNP coated with thio-functionalised actinonin and a derivative. Interactions between 15N-enriched His-peptide deformylase 1-147 from E. coli (His-ecPDF 1-147) and compound-coated AuNP were investigated via 2D 1H-15N-HSQC NMR spectra proving the direct binding to His-ecPDF 1-147. More importantly by adding dithiothreitol (DTT), we show that the derivative is successfully released from AuNPs while still bound to His-ecPDF 1-147. Our findings indicate that AuNP-conjugated ligands can address and bind intracellular target proteins. The system introduced here presents a new delivery platform for antibiotics and allows for the easy optimisation of ligand coated AuNPs.


Assuntos
Amidoidrolases , Ouro , Nanopartículas Metálicas , Ouro/química , Escherichia coli , Ligantes , Nanopartículas Metálicas/química , Antibacterianos/farmacologia , Ácidos Hidroxâmicos
4.
J Phys Chem B ; 127(30): 6668-6674, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37490415

RESUMO

Electron paramagnetic resonance spectroscopy (EPR) is mostly used in structural biology in conjunction with pulsed dipolar spectroscopy (PDS) methods to monitor interspin distances in biomacromolecules at cryogenic temperatures both in vitro and in cells. In this context, spectroscopically orthogonal spin labels were shown to increase the information content that can be gained per sample. Here, we exploit the characteristic properties of gadolinium and nitroxide spin labels at physiological temperatures to study side chain dynamics via continuous wave (cw) EPR at X band, surface water dynamics via Overhauser dynamic nuclear polarization at X band and short-range distances via cw EPR at high fields. The presented approaches further increase the accessible information content on biomolecules tagged with orthogonal labels providing insights into molecular interactions and dynamic equilibria that are only revealed under physiological conditions.


Assuntos
Biologia , Marcadores de Spin , Temperatura , Espectroscopia de Ressonância de Spin Eletrônica/métodos
5.
Nat Commun ; 14(1): 2273, 2023 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-37080980

RESUMO

Bulky cargos like procollagens, apolipoproteins, and mucins exceed the size of conventional COPII vesicles. During evolution a process emerged in metazoans, predominantly governed by the TANGO1 protein family, that organizes cargo at the exit sites of the endoplasmic reticulum and facilitates export by the formation of tunnel-like connections between the ER and Golgi. Hitherto, cargo-recognition appeared to be mediated by an SH3-like domain. Based on structural and dynamic data as well as interaction studies from NMR spectroscopy and microscale thermophoresis presented here, we show that the luminal cargo-recognition domain of TANGO1 adopts a new functional fold for which we suggest the term MOTH (MIA, Otoraplin, TALI/TANGO1 homology) domain. These MOTH domains, as well as an evolutionary intermediate found in invertebrates, constitute a distinct domain family that emerged from SH3 domains and acquired the ability to bind collagen.


Assuntos
Colágeno , Domínios de Homologia de src , Transporte Proteico , Colágeno/metabolismo , Pró-Colágeno/metabolismo , Complexo de Golgi/metabolismo
6.
ChemMedChem ; 18(11): e202200631, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36883965

RESUMO

Due to worldwide increasing resistances, there is a considerable need for antibacterial compounds with modes of action not yet realized in commercial antibiotics. One such promising structure is the acetyl-CoA carboxylase (ACC) inhibitor moiramide B which shows strong antibacterial activity against gram-positive bacteria such as Bacillus subtilis and weaker activities against gram-negative bacteria. However, the narrow structure-activity relationship of the pseudopeptide unit of moiramide B represents a formidable challenge for any optimization strategy. In contrast, the lipophilic fatty acid tail is considered an unspecific vehicle responsible only for the transport of moiramide into the bacterial cell. Here we show that the sorbic acid unit, in fact, is highly relevant for ACC inhibition. A hitherto undescribed sub-pocket at the end of the sorbic acid channel binds strongly aromatic rings and allows the development of moiramide derivatives with altered antibacterial profiles including anti-tubercular activity.


Assuntos
Antibacterianos , Ácido Sórbico , Antibacterianos/farmacologia , Antibacterianos/química , Amidas/farmacologia , Succinimidas/farmacologia , Testes de Sensibilidade Microbiana
7.
8.
Biol Chem ; 404(4): 241-254, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36809224

RESUMO

The Phosphatidylinositol 3-phosphate 5-kinase Type III PIKfyve is the main source for selectively generated phosphatidylinositol 3,5-bisphosphate (PI(3,5)P2), a known regulator of membrane protein trafficking. PI(3,5)P2 facilitates the cardiac KCNQ1/KCNE1 channel plasma membrane abundance and therewith increases the macroscopic current amplitude. Functional-physical interaction of PI(3,5)P2 with membrane proteins and its structural impact is not sufficiently understood. This study aimed to identify molecular interaction sites and stimulatory mechanisms of the KCNQ1/KCNE1 channel via the PIKfyve-PI(3,5)P2 axis. Mutational scanning at the intracellular membrane leaflet and nuclear magnetic resonance (NMR) spectroscopy identified two PI(3,5)P2 binding sites, the known PIP2 site PS1 and the newly identified N-terminal α-helix S0 as relevant for functional PIKfyve effects. Cd2+ coordination to engineered cysteines and molecular modeling suggest that repositioning of S0 stabilizes the channel s open state, an effect strictly dependent on parallel binding of PI(3,5)P2 to both sites.


Assuntos
Canal de Potássio KCNQ1 , Fosfatidilinositol 4,5-Difosfato , Fosfatidilinositol 4,5-Difosfato/química , Fosfatidilinositol 4,5-Difosfato/metabolismo , Canal de Potássio KCNQ1/química , Canal de Potássio KCNQ1/genética , Canal de Potássio KCNQ1/metabolismo , Sítios de Ligação , Mutação , Membrana Celular/metabolismo
9.
Z Naturforsch C J Biosci ; 78(3-4): 123-131, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35993925

RESUMO

The preparation of a novel 4-methylbenzo[h] cinnolines entity via a three-step synthetic protocol is described. Cyclization of the naphthylamidrazones, in the presence of polyphosphoric acid (PPA), furnishes the respective target benzo[h]cinnolines directly. This one-pot synthesis involves intramolecular Friedel-Crafts acylation followed by instant elimination under heating conditions. It is noteworthy that the yield of the product from this step decreases dramatically if the heating is extended beyond 3 h. The target novel cinnolone derivatives were identified by mass spectrometry and their structures elucidated by spectroscopic techniques. Subsequently, molecular docking was performed to shed light on the putative binding mode of the newly synthesized cinnolines. The docking results indicate that these derivatives are potential inhibitors of tubulin polymerization and the best interaction was achieved with a computational ki = 0.5 nM and posed correctly over the lexibulin.


Assuntos
Antineoplásicos , Compostos Heterocíclicos com 2 Anéis , Tubulina (Proteína)/metabolismo , Simulação de Acoplamento Molecular , Polimerização , Compostos Heterocíclicos com 2 Anéis/química , Compostos Heterocíclicos com 2 Anéis/farmacologia , Estrutura Molecular , Antineoplásicos/farmacologia , Proliferação de Células
11.
Virus Res ; 320: 198903, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36037849

RESUMO

Ion channels are membrane proteins essential for a plethora of cellular functions including maintaining cell shape, ion homeostasis, cardiac rhythm and action potential in neurons. The complexity and often extensive structure of eukaryotic membrane proteins makes it difficult to understand their basic biological regulation. Therefore, this article suggests, viroporins - the miniature versions of eukaryotic protein homologs from viruses - might serve as model systems to provide insights into behaviour of eukaryotic ion channels in general. The structural requirements for correct assembly of the channel along with the basic functional properties of a K+ channel exist in the minimal design of the viral K+ channels from two viruses, Chlorella virus (Kcv) and Ectocarpus siliculosus virus (Kesv). These small viral proteins readily assemble into tetramers and they sort in cells to distinct target membranes. When these viruses-encoded channels are expressed into the mammalian cells, they utilise their protein machinery and hence can serve as excellent tools to study the cells protein sorting machinery. This combination of small size and robust function makes viral K+ channels a valuable model system for detection of basic structure-function correlations. It is believed that molecular and physiochemical analyses of these viroporins may serve as basis for the development of inhibitors or modulators to ion channel activity for targeting ion channel diseases - so called channelopathies. Therefore, it may provide a potential different scope for molecular pharmacology studies aiming at novel and innovative therapeutics associated with channel related diseases. This article reviews the structural and functional properties of Kcv and Kesv upon expression in mammalian cells and Xenopus oocytes. The mechanisms behind differential protein sorting in Kcv and Kesv are also thoroughly discussed.


Assuntos
Chlorella , Phycodnaviridae , Vírus , Animais , Chlorella/metabolismo , Eucariotos , Canais Iônicos/metabolismo , Mamíferos/metabolismo , Phycodnaviridae/genética , Phycodnaviridae/metabolismo , Potássio/metabolismo , Canais de Potássio/química , Canais de Potássio/genética , Canais de Potássio/metabolismo , Proteínas Viroporinas , Vírus/metabolismo
12.
Langmuir ; 38(34): 10351-10361, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35969658

RESUMO

This work aimed at the development of a stable albumin-perfluorocarbon (o/w) emulsion as an artificial oxygen carrier suitable for clinical application. So far, albumin-perfluorocarbon-(o/w) emulsions have been successfully applied in preclinical trials. Cross-linking a variety of different physical and chemical methods for the characterization of an albumin-perfluorocarbon (PFC)-(o/w) emulsion was necessary to gain a deep understanding of its specific emulsification processes during high-pressure homogenization. High-pressure homogenization is simple but incorporates complex physical reactions, with many factors influencing the formation of PFC droplets and their coating. This work describes and interprets the impact of albumin concentration, homogenization pressure, and repeated microfluidizer passages on PFC-droplet formation; its influence on storage stability; and the overcoming of obstacles in preparing stable nanoemulsions. The applied methods comprise dynamic light scattering, static light scattering, cryo- and non-cryo-scanning and transmission electron microscopies, nuclear magnetic resonance spectroscopy, light microscopy, amperometric oxygen measurements, and biochemical methods. The use of this wide range of methods provided a sufficiently comprehensive picture of this polydisperse emulsion. Optimization of PFC-droplet formation by means of temperature and pressure gradients results in an emulsion with improved storage stability (tested up to 5 months) that possibly qualifies for clinical applications. Adaptations in the manufacturing process strikingly changed the physical properties of the emulsion but did not affect its oxygen capacity.


Assuntos
Fluorocarbonos , Albuminas , Emulsões/química , Fluorocarbonos/química , Oxigênio , Tamanho da Partícula
13.
ChemMedChem ; 17(22): e202200392, 2022 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-35979853

RESUMO

Ras proteins are implicated in some of the most common life-threatening cancers. Despite intense research during the past three decades, progress towards small-molecule inhibitors of mutant Ras proteins still has been limited. Only recently has significant progress been made, in particular with ligands for binding sites located in the switch II and between the switch I and switch II region of K-Ras4B. However, the structural diversity of inhibitors identified for those sites to date is narrow. Herein, we show that hydrazones and oxime ethers of specific bis(het)aryl ketones represent structurally variable chemotypes for new GDP/GTP-exchange inhibitors with significant cellular activity.


Assuntos
Éteres , Proteínas ras , Sítios de Ligação , Proteínas Fúngicas , Hidrazonas/farmacologia
14.
Molecules ; 26(14)2021 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-34299515

RESUMO

A novel series of 2-(aryldiazenyl)-3-methyl-1H-benzo[g]indole derivatives (3a-f) were prepared through the cyclization of the corresponding arylamidrazones, employing polyphosphoric acid (PPA) as a cyclizing agent. All of the compounds (3a-f) were characterized using 1H NMR, 13C NMR, MS, elemental analysis, and melting point techniques. The synthesized compounds were evaluated for cytotoxic activity against diverse human cancer cell lines by the National Cancer Institute. While all of the screened compounds were found to be cytotoxic at a 10 µM concentration, two of them (2c) and (3c) were subjected to five dose screens and showed a significant cytotoxicity and selectivity.


Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Indóis/síntese química , Indóis/farmacologia , Células A549 , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Células HL-60 , Humanos , Células K562 , Células MCF-7 , Células PC-3 , Relação Estrutura-Atividade
15.
Nat Plants ; 7(4): 524-538, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33846594

RESUMO

Biogenesis of photosystem II (PSII), nature's water-splitting catalyst, is assisted by auxiliary proteins that form transient complexes with PSII components to facilitate stepwise assembly events. Using cryo-electron microscopy, we solved the structure of such a PSII assembly intermediate from Thermosynechococcus elongatus at 2.94 Å resolution. It contains three assembly factors (Psb27, Psb28 and Psb34) and provides detailed insights into their molecular function. Binding of Psb28 induces large conformational changes at the PSII acceptor side, which distort the binding pocket of the mobile quinone (QB) and replace the bicarbonate ligand of non-haem iron with glutamate, a structural motif found in reaction centres of non-oxygenic photosynthetic bacteria. These results reveal mechanisms that protect PSII from damage during biogenesis until water splitting is activated. Our structure further demonstrates how the PSII active site is prepared for the incorporation of the Mn4CaO5 cluster, which performs the unique water-splitting reaction.


Assuntos
Proteínas de Bactérias/genética , Complexo de Proteína do Fotossistema II/genética , Proteínas de Bactérias/ultraestrutura , Fotossíntese , Complexo de Proteína do Fotossistema II/ultraestrutura , Thermosynechococcus/genética , Thermosynechococcus/ultraestrutura
16.
ChemMedChem ; 16(16): 2504-2514, 2021 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-33899342

RESUMO

Oncogenic Ras proteins are implicated in the most common life-threatening cancers. Despite intense research over the past two decades, the progress towards small-molecule inhibitors has been limited. One reason for this failure is that Ras proteins interact with their effectors only via protein-protein interactions, which are notoriously difficult to address with small organic molecules. Herein we describe an alternative strategy, which prevents farnesylation and subsequent membrane insertion, a prerequisite for the activation of Ras proteins. Our approach is based on sequence-selective supramolecular receptors which bind to the C-terminal farnesyl transferase recognition unit of Ras and Rheb proteins and covalently modify the essential cysteine in the so-called CaaX-box.


Assuntos
Proteínas de Membrana/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Linhagem Celular Tumoral , Humanos , Proteínas de Membrana/química , Proteínas Quinases Ativadas por Mitógeno/química , Modelos Moleculares , Estrutura Molecular , Fosfatidilinositol 3-Quinases/química , Ligação Proteica , Proteínas Proto-Oncogênicas p21(ras)/química , Transdução de Sinais
17.
Structure ; 29(2): 114-124.e3, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-32966763

RESUMO

Bcl-2 proteins orchestrate the mitochondrial pathway of apoptosis, pivotal for cell death. Yet, the structural details of the conformational changes of pro- and antiapoptotic proteins and their interactions remain unclear. Pulse dipolar spectroscopy (double electron-electron resonance [DEER], also known as PELDOR) in combination with spin-labeled apoptotic Bcl-2 proteins unveils conformational changes and interactions of each protein player via detection of intra- and inter-protein distances. Here, we present the synthesis and characterization of pro-apoptotic BimBH3 peptides of different lengths carrying cysteines for labeling with nitroxide or gadolinium spin probes. We show by DEER that the length of the peptides modulates their homo-interactions in the absence of other Bcl-2 proteins and solve by X-ray crystallography the structure of a BimBH3 tetramer, revealing the molecular details of the inter-peptide interactions. Finally, we prove that using orthogonal labels and three-channel DEER we can disentangle the Bim-Bim, Bcl-xL-Bcl-xL, and Bim-Bcl-xL interactions in a simplified interactome.


Assuntos
Proteína 11 Semelhante a Bcl-2/química , Multimerização Proteica , Animais , Apoptose , Proteína 11 Semelhante a Bcl-2/metabolismo , Sítios de Ligação , Humanos , Camundongos , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Ligação Proteica , Ratos , Proteína bcl-X/química , Proteína bcl-X/metabolismo
18.
Angew Chem Int Ed Engl ; 59(17): 6806-6810, 2020 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-32045504

RESUMO

Even though halogen bonding-the noncovalent interaction between electrophilic halogen substituents and Lewis bases-has now been established in molecular recognition and catalysis, its use in enantioselective processes is still very rarely explored. Herein, we present the synthesis of chiral bidentate halogen-bond donors based on two iodoimidazolium units with rigidly attached chiral sidearms. With these Lewis acids, chiral recognition of a racemic diamine is achieved in NMR studies. DFT calculations support a 1:1 interaction of the halogen-bond donor with both enantiomers and indicate that the chiral recognition is based on a different spatial orientation of the Lewis bases in the halogen-bonded complexes. In addition, moderate enantioselectivity is achieved in a Mukaiyama aldol reaction with a preorganized variant of the chiral halogen-bond donor. This represents the first case in which asymmetric induction was realized with a pure halogen-bond donor lacking any additional active functional groups.

19.
Protein Sci ; 28(12): 2064-2072, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31587407

RESUMO

The nuclear factor of kappa light polypeptide gene enhancer in B-cells (NFκB) transcription factors play a critical role in human immune response. The family includes homodimers and heterodimers of five component proteins, which mediate different transcriptional responses and bind preferentially to different DNA sequences. Crystal structures of DNA complexes show that the dimers of the Rel-homology regions are structurally very similar. Differing DNA sequence preference together with structural similarity suggests that the dimers may differ in their dynamics. In this study, we present the first near-complete 15 N, 13 Cα/ß , and HN backbone resonance assignments of two dimers of the dimerization domain (DD) of the NFκB1 (p50) protein (residues 241-351): the homodimer of two p50 domains and a heterodimer of the p50 DD with the p65 DD. As expected, the two dimers behave very similarly, with chemical shift differences between them largely concentrated in the dimer interface and attributable to specific differences in the amino acid sequences of p50 and p65. A comparison of the picosecond-nanosecond dynamics of the homo- and heterodimers also shows that the environment of p50 is similar, with an overall slightly reduced correlation time for the homodimer compared to the heterodimer, consistent with its slightly smaller molecular weight. These results demonstrate that NMR spectroscopy can be used to explore subtle changes in structure and dynamics that have the potential to give insights into differences in specificity that can be exploited in the design of new therapeutic agents.


Assuntos
Subunidade p50 de NF-kappa B/metabolismo , Fator de Transcrição RelA/metabolismo , Dimerização , Humanos , Modelos Moleculares , Subunidade p50 de NF-kappa B/química , Fator de Transcrição RelA/química
20.
BMC Mol Cell Biol ; 20(1): 23, 2019 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-31286859

RESUMO

BACKGROUND: Protein tyrosine phosphatase PTPN13, also known as PTP-BL in mice, is a large multi-domain non-transmembrane scaffolding protein with a molecular mass of 270 kDa. It is involved in the regulation of several cellular processes such as cytokinesis and actin-cytoskeletal rearrangement. The modular structure of PTPN13 consists of an N-terminal KIND domain, a FERM domain, and five PDZ domains, followed by a C-terminal protein tyrosine phosphatase domain. PDZ domains are among the most abundant protein modules and they play a crucial role in signal transduction of protein networks. RESULTS: Here, we have analysed the binding characteristics of the isolated PDZ domains 2 and 3 from PTPN13 and compared them to the tandem domain PDZ2/3, which interacts with 12 C-terminal residues of the tumour suppressor protein of APC, using heteronuclear multidimensional NMR spectroscopy. Furthermore, we could show for the first time that PRK2 is a weak binding partner of PDZ2 and we demonstrate that the presence of PDZ3 alters the binding affinity of PDZ2 for APC, suggesting an allosteric effect and thereby modulating the binding characteristics of PDZ2. A HADDOCK-based molecular model of the PDZ2/3 tandem domain from PTPN13 supports these results. CONCLUSIONS: Our study of tandem PDZ2/3 in complex with APC suggests that the interaction of PDZ3 with PDZ2 induces an allosteric modulation within PDZ2 emanating from the back of the domain to the ligand binding site. Thus, the modified binding preference of PDZ2 for APC could be explained by an allosteric effect and provides further evidence for the pivotal function of PDZ2 in the PDZ123 domain triplet within PTPN13.


Assuntos
Proteína da Polipose Adenomatosa do Colo/química , Domínios PDZ , Domínios e Motivos de Interação entre Proteínas , Proteína Tirosina Fosfatase não Receptora Tipo 13/química , Regulação Alostérica , Animais , Sítios de Ligação , Ligantes , Camundongos , Modelos Moleculares , Simulação de Acoplamento Molecular , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Conformação Proteica em alfa-Hélice , Multimerização Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA