Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Amino Acids ; 31(4): 385-96, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16944046

RESUMO

BACKGROUND: Perinatal asphyxia is a frequent cause of neurological handicap with no known therapy. However, hypothermic therapy has recently attracted attention owing to its neuroprotective property in brain of immature organisms. OBJECTIVES: Hypothermia appears to be promising in reversing the immediate effect of perinatal asphyxia, but data on long-term neuroprotection is still lacking. We therefore intended to test the long-term effect of moderate and profound hypothermia on brain morphology and functions using a well established rat model of perinatal asphyxia. METHODS: Rat pups delivered by caesarean section were placed into a water bath, still in patent membranes, at 37 degrees C and variable hypothermic conditions to induce asphyxia and thereafter given to surrogate mothers. Examinations were performed at the age of three months, consisting of a battery of motor, behavioural, cognition and reflex tests including rota-rod, Morris water maze, multiple T-maze, elevated plus maze and open field studies. Morphological alterations were evaluated by Nissl staining of brain areas known to be hypoxia sensitive. Neurotransmission system markers, including tyrosine hydroxylase, vesicular monoamine transporter, vesicular acetylcholine transporter and excitatory amino acid carrier1 were analyzed by immunohistochemistry. RESULTS: Survival increased with hypothermia. The Nissl stain revealed neuronal loss in hippocampus and hypothalamus of normothermic asphyxiated group (20/37) compared to controls (0/37), but no neuroprotective patterns emerged from hypothermia. An overall inconsistent protection of the neural systems was noted by variable periods of hypothermia. Motor function was significantly impaired in 20/37 as compared to 0/37. In the Morris water maze and multiple T-maze, results were comparable between the groups. In the elevated plus maze, time spent in the closed arm was reduced and in the open field, vertical behaviour was altered in the 20/37 group with horizontal motor behaviour being unaffected. Hypothermia reversed all abnormalities seen in 20/37, with short-term moderate and profound hypothermia being superior to long-term hypothermia. CONCLUSION: Hypothermia not only significantly increased survival, but also resulted in unimpaired motor as well as improved cognitive functions. Those findings are in contrast to altered brain morphology. As neuronal loss was present in various brain regions, we conclude that deficits may be compensated in the maturing animal. Intrahypoxic hypothermia was able to protect the rat from the devastating effect of perinatal asphyxia not in morphological, but in functional terms.


Assuntos
Asfixia Neonatal/patologia , Asfixia Neonatal/fisiopatologia , Cognição , Hipotermia Induzida , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Colina O-Acetiltransferase/metabolismo , Modelos Animais de Doenças , Humanos , Recém-Nascido , Aprendizagem em Labirinto , Atividade Motora , Neurônios/metabolismo , Neurônios/patologia , Ratos , Fatores de Tempo
2.
J Neural Transm Suppl ; (61): 347-59, 2001.
Artigo em Inglês | MEDLINE | ID: mdl-11771757

RESUMO

Information on the various factors leading to impairments in the developing brain of fetal Down Syndrome patients is limited to few histological reports. We therefore attempted to describe expression levels of proteins in brain using the proteomic technique of two-dimensional electrophoresis with subsequent mass spectroscopical identification of protein spots and quantification with specific software. Cortical tissue was obtained from autopsy of human fetal abortus. Protein levels of GTP-binding nuclear protein ran, guanine nucleotide-binding protein g(o), alpha subunit 2, guanine nucleotide-binding protein g(i)/g(s)/g(t) beta subunit 1, -beta subunit 2, guanine nucleotide-binding protein beta subunit 5, nucleoside diphosphate kinase A, nucleoside diphosphate kinase B, Rab GDP-dissociation inhibitor beta, Rho GDP-dissociation inhibitor 1, biphosphate 3'-nucleotidase, small glutamine-rich tetra-tricopeptide repeat-containing protein and histidine triad nucleotide-binding protein were studied. Quantification revealed statistically significant reduced levels of nucleoside diphosphate kinase B, Rab GDP-dissociation inhibitor beta and histidine triad nucleotide-binding protein in fetal DS brain as compared to controls. We conclude that in early prenatal life proteins involved in neural differentiation, migration and synaptic transmission are impaired in DS cortex. These results may help to understand the abundant mechanisms leading to abnormalities in the wiring, structure and function of DS brain.


Assuntos
Encéfalo/metabolismo , Síndrome de Down/metabolismo , Inibidores de Dissociação do Nucleotídeo Guanina/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Núcleosídeo-Difosfato Quinase/metabolismo , Encéfalo/anormalidades , Eletroforese em Gel Bidimensional , Feminino , Feto/metabolismo , Inibidores de Dissociação do Nucleotídeo Guanina/análise , Humanos , Masculino , Proteínas do Tecido Nervoso/análise , Núcleosídeo-Difosfato Quinase/análise , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...