Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Radiat Isot ; 194: 110712, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36764223

RESUMO

Accurately counting analog events requires constructing an electronics chain that produces one count for each input pulse. In this work we review the use of Nuclear Instrumentation Module electronic units for counting neutron capture events in a 3He tube. We identify two unique types of false trigger events in a leading-edge discriminator and show how a dual timer module can be used to produce a veto window to exclude these events. We use the constructed electronics chain to build an apparatus to measure neutron pulses from a 252Cf neutron source. We compare the measurements with a Monte Carlo N-Particle (MCNP) model to determine the activity of the neutron source. Furthermore, by making additional measurements with borated polyethylene attenuators between the source and detector, we are able to determine the boron concentration of the polyethylene. This technique provides accurate determination of the source activity to a precision of 2.8% at the k = 1 level. The method used is simple, inexpensive, and requires no additional calibrated instruments.

2.
Nat Commun ; 10(1): 1928, 2019 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-31028271

RESUMO

Lead chalcogenides have exceptional thermoelectric properties and intriguing anharmonic lattice dynamics underlying their low thermal conductivities. An ideal material for thermoelectric efficiency is the phonon glass-electron crystal, which drives research on strategies to scatter or localize phonons while minimally disrupting electronic-transport. Anharmonicity can potentially do both, even in perfect crystals, and simulations suggest that PbSe is anharmonic enough to support intrinsic localized modes that halt transport. Here, we experimentally observe high-temperature localization in PbSe using neutron scattering but find that localization is not limited to isolated modes - zero group velocity develops for a significant section of the transverse optic phonon on heating above a transition in the anharmonic dynamics. Arrest of the optic phonon propagation coincides with unusual sharpening of the longitudinal acoustic mode due to a loss of phase space for scattering. Our study shows how nonlinear physics beyond conventional anharmonic perturbations can fundamentally alter vibrational transport properties.

3.
Phys Rev Lett ; 120(24): 245701, 2018 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-29956961

RESUMO

Shape memory strain glasses are frustrated ferroelastic materials with glasslike slow relaxation and nanodomains. It is possible to change a NiCoMnIn Heusler alloy from a martensitically transforming alloy to a nontransforming strain glass by annealing, but minimal differences are evident in the short- or long-range order above the transition temperature-although there is a structural relaxation and a 0.18% lattice expansion in the annealed sample. Using neutron scattering we find glasslike phonon damping in the strain glass but not the transforming alloy at temperatures well above the transition. Damping occurs in the mode with displacements matching the martensitic transformation. With support from first-principles calculations, we argue that the strain glass originates not with transformation strain pinning but with a disruption of the underlying electronic instability when disorder resonance states cross the Fermi level.

4.
Nat Commun ; 9(1): 1823, 2018 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-29739934

RESUMO

Controlling the thermal energy of lattice vibrations separately from electrons is vital to many applications including electronic devices and thermoelectric energy conversion. To remove heat without shorting electrical connections, heat must be carried in the lattice of electrical insulators. Phonons are limited to the speed of sound, which, compared to the speed of electronic processes, puts a fundamental constraint on thermal management. Here we report a supersonic channel for the propagation of lattice energy in the technologically promising piezoelectric mineral fresnoite (Ba2TiSi2O8) using neutron scattering. Lattice energy propagates 2.8-4.3 times the speed of sound in the form of phasons, which are caused by an incommensurate modulation in the flexible framework structure of fresnoite. The phasons enhance the thermal conductivity by 20% at room temperature and carry lattice-energy signals at speeds beyond the limits of phonons.

5.
Rev Sci Instrum ; 86(2): 023902, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25725858

RESUMO

We present a new instrument for spin echo small angle neutron scattering (SESANS) developed at the Low Energy Neutron Source at Indiana University. A description of the various instrument components is given along with the performance of these components. At the heart of the instrument are a series of resistive coils to encode the neutron trajectory into the neutron polarisation. These are shown to work well over a broad range of neutron wavelengths. Neutron polarisation analysis is accomplished using a continuously operating neutron spin filter polarised by Rb spin-exchange optical pumping of (3)He. We describe the performance of the analyser along with a study of the (3)He polarisation stability and its implications for SESANS measurements. Scattering from silica Stöber particles is investigated and agrees with samples run on similar instruments.

6.
Rev Sci Instrum ; 84(10): 105113, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24182169

RESUMO

Controlled manipulation of neutron spin is a critical tool for many neutron scattering techniques. We have constructed current-sheet, neutron spin flippers for use in Spin Echo Scattering Angle Measurement (SESAME) that comprise pairs of open-faced solenoids which introduce an abrupt field reversal at a shared boundary. The magnetic fields generated by the coils have been mapped and compared with both an analytical approximation and a numerical boundary integral calculation. The agreement is generally good, allowing the former method to be used for rapid calculations of the Larmor phase acquired by a neutron passing through the flipper. The evolution of the neutron spin through the current sheets inside the flipper is calculated for various geometries of the current-carrying conductors, including different wire shapes, arrangements, and common imperfections. The flipping efficiency is found to be sensitive to gaps between wires and between current sheets. SESAME requires flippers with high fields and flipping planes inclined to the neutron beam. To avoid substantial neutron depolarization, such flippers require an interdigitated arrangement of wires.

7.
Rev Sci Instrum ; 79(6): 063901, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18601411

RESUMO

Spin echo scattering angle measurement (SESAME) is a sensitive interference technique for measuring neutron diffraction. The method uses waveplates or birefringent prisms to produce a phase separation (the Larmor phase) between the "up" and "down" spin components of a neutron wavefunction that is initially prepared in a state that is a linear combination of in-phase up and down components. For neutrons, uniformly birefringent optical elements can be constructed from closed solenoids with appropriately shaped cross sections. Such elements are inconvenient in practice, however, both because of the precision they demand in the control of magnetic fields outside the elements and because of the amount of material required in the neutron beam. In this paper, we explore a different option in which triangular-cross-section solenoids used to create magnetic fields for SESAME have gaps in one face, allowing the lines of magnetic flux to "leak out" of the solenoid. Although the resulting field inhomogeneity produces aberrations in the Larmor phase, the symmetry of the solenoid gaps causes the aberrations produced by neighboring pairs of triangular solenoids to cancel to a significant extent. The overall symmetry of the SESAME apparatus leads to further cancellations of aberrations, providing an architecture that is easy to construct and robust in performance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...