Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chirality ; 24(10): 810-6, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22760675

RESUMO

A synthesis of diastereomeric bicyclic dibenzoyl esters derived from enantiomerically pure (1S,5S)-bicyclo[3.3.1]nonane-2,6-dione was accomplished. Molecules containing two benzoyl chromophores with different configuration in the bicyclic framework were obtained. Chiroptical properties of the synthesized enantiomerically pure molecules were studied. Diastereomeric esters exhibited exciton couplets in the circular dichroism (CD) spectra because of transannular interaction between non-conjugated benzoate chromophores. The conformational effects and solvent impact on the exciton coupling were examined by CD spectroscopy. Theoretical computation of the CD spectra of diastereomers correctly reproduced the sign of the exciton couplets in the studied molecules, however, no major solvent dielectric constant influence and conformational effects per se on the exciton coupling was observed.

2.
J Org Chem ; 70(10): 3903-13, 2005 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-15876078

RESUMO

[reaction: see text] The Baeyer-Villiger oxidation of (+)-(1R,5S)-bicyclo[3.3.1]nonane-2,7-dione, 1, can lead to four keto-lactone products, 2a-d. A single isomer is obtained experimentally. We have used IR and VCD spectroscopies to identify the structure of this product. DFT calculations of the IR and VCD spectra of 2a-d show unambiguously that the experimental product is (+)-(1R,6R)-2a, and not the expected product 2b. NMR studies, including comparison of DFT and experimental 1H and 13C spectra, support this conclusion. This work provides the first example of the use of VCD spectroscopy to discriminate between structural isomers of a chiral molecule. The specific rotation of (+)-(1R,6R)-2a, predicted using TDDFT methods, is negative demonstrating that absolute configurations determined from TDDFT calculations of specific rotations are not 100% reliable.

3.
J Org Chem ; 69(6): 1948-58, 2004 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-15058939

RESUMO

The concerted use of ab initio time-dependent density functional theory (TDDFT) calculations of transparent spectral region optical rotation and of circular dichroism has recently become practicable, permitting the concerted use of transparent spectral region optical rotation and circular dichroism in determining the absolute configurations of chiral molecules. Here, we report concerted TDDFT calculations of the transparent spectral region specific rotations and of the circular dichroism spectra originating in n --> pi C=O group excitations of four bicyclo[3.3.1]nonane diones, 1-4. Comparison to experiment yields absolute configurations for 1-4. For each dione, specific rotations and circular dichroism spectra give identical absolute configurations. Our results are consistent with previous work, with the exception of the Octant Rule-derived absolute configuration of the 2,9-dione.

4.
Chirality ; 13(10): 694-8, 2001.
Artigo em Inglês | MEDLINE | ID: mdl-11746803

RESUMO

A study of the enantiomers of bicyclo[3.3.1]nonane-2,7-dione, a chiral molecule containing two carbonyl chromophores, was performed. Enantiomers of this structure were obtained by HPLC resolution and the (+)-(1R,5S)-enantiomer by enantiospecific synthesis from(+)-(1S,5S)-bicyclo[3.3.1]nonane-2,6-dione. The title structure is an interesting molecule to demonstrate the validity of the octant rule. The location of the major chair-chair conformer into octants placing each chromophore into the origin of the octants led to the opposite configuration assignments. In order to prove unequivocally absolute configuration, enantiospecific synthesis of the title compound was carried out. The kinetic resolution of racemic bicyclo[3.3.1]nonane-2,6-dione using baker's yeast afforded (+)-(1S,5S)-2,6-dione. Employing a reaction sequence analogous to one developed earlier by us with racemic substrates led to carbonyl group shift giving enantiomerically pure (+)-(1R,5S)-bicyclo[3.3.1]nonane-2,7-dione. The absolute configuration of the investigated compound was established by combined use of the octant rule and chemical correlation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...