Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Cell Dev Biol ; 11: 1214962, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37621774

RESUMO

Computational models of cells cannot be considered complete unless they include the most fundamental process of life, the replication and inheritance of genetic material. By creating a computational framework to model systems of replicating bacterial chromosomes as polymers at 10 bp resolution with Brownian dynamics, we investigate changes in chromosome organization during replication and extend the applicability of an existing whole-cell model (WCM) for a genetically minimal bacterium, JCVI-syn3A, to the entire cell-cycle. To achieve cell-scale chromosome structures that are realistic, we model the chromosome as a self-avoiding homopolymer with bending and torsional stiffnesses that capture the essential mechanical properties of dsDNA in Syn3A. In addition, the conformations of the circular DNA must avoid overlapping with ribosomes identitied in cryo-electron tomograms. While Syn3A lacks the complex regulatory systems known to orchestrate chromosome segregation in other bacteria, its minimized genome retains essential loop-extruding structural maintenance of chromosomes (SMC) protein complexes (SMC-scpAB) and topoisomerases. Through implementing the effects of these proteins in our simulations of replicating chromosomes, we find that they alone are sufficient for simultaneous chromosome segregation across all generations within nested theta structures. This supports previous studies suggesting loop-extrusion serves as a near-universal mechanism for chromosome organization within bacterial and eukaryotic cells. Furthermore, we analyze ribosome diffusion under the influence of the chromosome and calculate in silico chromosome contact maps that capture inter-daughter interactions. Finally, we present a methodology to map the polymer model of the chromosome to a Martini coarse-grained representation to prepare molecular dynamics models of entire Syn3A cells, which serves as an ultimate means of validation for cell states predicted by the WCM.

2.
J Chem Inf Model ; 63(15): 4664-4678, 2023 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-37506321

RESUMO

Modeling and simulation of small molecules such as drugs and biological cofactors have been both a major focus of computational chemistry for decades and a growing need among computational biophysicists who seek to investigate the interaction of different types of ligands with biomolecules. Of particular interest in this regard are quantum mechanical (QM) calculations that are used to more accurately describe such small molecules, which can be of heterogeneous structures and chemistry, either in purely QM calculations or in hybrid QM/molecular mechanics (MM) simulations. QM programs are also used to develop MM force field parameters for small molecules to be used along with established force fields for biomolecules in classical simulations. With this growing need in mind, here we report a set of software tools developed and closely integrated within the broadly used molecular visualization/analysis program, VMD, that allow the user to construct, modify, and parametrize small molecules and prepare them for QM, hybrid QM/MM, or classical simulations. The tools also provide interactive analysis and visualization capabilities in an easy-to-use and integrated environment. In this paper, we briefly report on these tools and their major features and capabilities, along with examples of how they can facilitate molecular research in computational biophysics that might be otherwise prohibitively complex.


Assuntos
Teoria Quântica , Simulação de Dinâmica Molecular , Software , Chlamydomonas reinhardtii/química , Modelos Moleculares , SARS-CoV-2/química , Bibliotecas de Moléculas Pequenas/química
3.
Artigo em Inglês | MEDLINE | ID: mdl-38197035

RESUMO

This paper assesses and reports the experience of ten teams working to port, validate, and benchmark several High Performance Computing applications on a novel GPU-accelerated Arm testbed system. The testbed consists of eight NVIDIA Arm HPC Developer Kit systems, each one equipped with a server-class Arm CPU from Ampere Computing and two data center GPUs from NVIDIA Corp. The systems are connected together using InfiniBand interconnect. The selected applications and mini-apps are written using several programming languages and use multiple accelerator-based programming models for GPUs such as CUDA, OpenACC, and OpenMP offloading. Working on application porting requires a robust and easy-to-access programming environment, including a variety of compilers and optimized scientific libraries. The goal of this work is to evaluate platform readiness and assess the effort required from developers to deploy well-established scientific workloads on current and future generation Arm-based GPU-accelerated HPC systems. The reported case studies demonstrate that the current level of maturity and diversity of software and tools is already adequate for large-scale production deployments.

4.
Comput Sci Eng ; 24(2): 7-18, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36465066

RESUMO

ANARI is a new 3-D rendering API, an emerging Khronos standard that enables visualization applications to leverage the state-of-the-art rendering techniques across diverse hardware platforms and rendering engines. Visualization applications have historically embedded custom-written renderers to enable them to provide the necessary combination of features, performance, and visual fidelity required by their users. As computing power, rendering algorithms, dedicated rendering hardware acceleration operations, and associated low-level APIs have advanced, the effort and costs associated with maintaining renderers within visualization applications have risen dramatically. The rising cost and complexity associated with renderer development creates an undesirable barrier for visualization applications to be able to fully benefit from the latest rendering methods and hardware. ANARI directly addresses these challenges by providing a high-level, visualization-oriented API that abstracts low-level rendering algorithms and hardware acceleration details while providing easy and efficient access to diverse ANARI implementations, thereby enabling visualization applications to support the state-of-the-art rendering capabilities.

5.
J Chem Theory Comput ; 18(8): 4983-4994, 2022 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-35621307

RESUMO

py-MCMD, an open-source Python software, provides a robust workflow layer that manages communication of relevant system information between the simulation engines NAMD and GOMC and generates coherent thermodynamic properties and trajectories for analysis. To validate the workflow and highlight its capabilities, hybrid Monte Carlo/molecular dynamics (MC/MD) simulations are performed for SPC/E water in the isobaric-isothermal (NPT) and grand canonical (GC) ensembles as well as with Gibbs ensemble Monte Carlo (GEMC). The hybrid MC/MD approach shows close agreement with reference MC simulations and has a computational efficiency that is 2 to 136 times greater than traditional Monte Carlo simulations. MC/MD simulations performed for water in a graphene slit pore illustrate significant gains in sampling efficiency when the coupled-decoupled configurational-bias MC (CD-CBMC) algorithm is used compared with simulations using a single unbiased random trial position. Simulations using CD-CBMC reach equilibrium with 25 times fewer cycles than simulations using a single unbiased random trial position, with a small increase in computational cost. In a more challenging application, hybrid grand canonical Monte Carlo/molecular dynamics (GCMC/MD) simulations are used to hydrate a buried binding pocket in bovine pancreatic trypsin inhibitor. Water occupancies produced by GCMC/MD simulations are in close agreement with crystallographically identified positions, and GCMC/MD simulations have a computational efficiency that is 5 times better than MD simulations. py-MCMD is available on GitHub at https://github.com/GOMC-WSU/py-MCMD.


Assuntos
Simulação de Dinâmica Molecular , Software , Animais , Bovinos , Método de Monte Carlo , Termodinâmica , Água/química
6.
Int J High Perform Comput Appl ; 36(5-6): 603-623, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38464362

RESUMO

The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) replication transcription complex (RTC) is a multi-domain protein responsible for replicating and transcribing the viral mRNA inside a human cell. Attacking RTC function with pharmaceutical compounds is a pathway to treating COVID-19. Conventional tools, e.g., cryo-electron microscopy and all-atom molecular dynamics (AAMD), do not provide sufficiently high resolution or timescale to capture important dynamics of this molecular machine. Consequently, we develop an innovative workflow that bridges the gap between these resolutions, using mesoscale fluctuating finite element analysis (FFEA) continuum simulations and a hierarchy of AI-methods that continually learn and infer features for maintaining consistency between AAMD and FFEA simulations. We leverage a multi-site distributed workflow manager to orchestrate AI, FFEA, and AAMD jobs, providing optimal resource utilization across HPC centers. Our study provides unprecedented access to study the SARS-CoV-2 RTC machinery, while providing general capability for AI-enabled multi-resolution simulations at scale.

7.
Proc UrgentHPC 2021 (2021) ; 2021: 1-10, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36573923

RESUMO

Over the past 18 months, the need to perform atomic detail molecular dynamics simulations of the SARS-CoV-2 virion, its spike protein, and other structures related to the viral infection cycle has led biomedical researchers worldwide to urgently seek out all available biomolecular structure information, appropriate molecular modeling and simulation software, and the necessary computing resources to conduct their work. We describe our experiences from several COVID-19 research collaborations and the challenges they presented in terms of our molecular modeling software development and support efforts, our laboratory's local computing environment, and our scientists' use of non-traditional HPC hardware platforms such as public clouds for large scale parallel molecular dynamics simulations.

8.
Int J High Perform Comput Appl ; 35(5): 432-451, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38603008

RESUMO

We develop a generalizable AI-driven workflow that leverages heterogeneous HPC resources to explore the time-dependent dynamics of molecular systems. We use this workflow to investigate the mechanisms of infectivity of the SARS-CoV-2 spike protein, the main viral infection machinery. Our workflow enables more efficient investigation of spike dynamics in a variety of complex environments, including within a complete SARS-CoV-2 viral envelope simulation, which contains 305 million atoms and shows strong scaling on ORNL Summit using NAMD. We present several novel scientific discoveries, including the elucidation of the spike's full glycan shield, the role of spike glycans in modulating the infectivity of the virus, and the characterization of the flexible interactions between the spike and the human ACE2 receptor. We also demonstrate how AI can accelerate conformational sampling across different systems and pave the way for the future application of such methods to additional studies in SARS-CoV-2 and other molecular systems.

9.
bioRxiv ; 2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-33236007

RESUMO

We develop a generalizable AI-driven workflow that leverages heterogeneous HPC resources to explore the time-dependent dynamics of molecular systems. We use this workflow to investigate the mechanisms of infectivity of the SARS-CoV-2 spike protein, the main viral infection machinery. Our workflow enables more efficient investigation of spike dynamics in a variety of complex environments, including within a complete SARS-CoV-2 viral envelope simulation, which contains 305 million atoms and shows strong scaling on ORNL Summit using NAMD. We present several novel scientific discoveries, including the elucidation of the spike's full glycan shield, the role of spike glycans in modulating the infectivity of the virus, and the characterization of the flexible interactions between the spike and the human ACE2 receptor. We also demonstrate how AI can accelerate conformational sampling across different systems and pave the way for the future application of such methods to additional studies in SARS-CoV-2 and other molecular systems.

10.
J Chem Phys ; 153(4): 044130, 2020 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-32752662

RESUMO

NAMDis a molecular dynamics program designed for high-performance simulations of very large biological objects on CPU- and GPU-based architectures. NAMD offers scalable performance on petascale parallel supercomputers consisting of hundreds of thousands of cores, as well as on inexpensive commodity clusters commonly found in academic environments. It is written in C++ and leans on Charm++ parallel objects for optimal performance on low-latency architectures. NAMD is a versatile, multipurpose code that gathers state-of-the-art algorithms to carry out simulations in apt thermodynamic ensembles, using the widely popular CHARMM, AMBER, OPLS, and GROMOS biomolecular force fields. Here, we review the main features of NAMD that allow both equilibrium and enhanced-sampling molecular dynamics simulations with numerical efficiency. We describe the underlying concepts utilized by NAMD and their implementation, most notably for handling long-range electrostatics; controlling the temperature, pressure, and pH; applying external potentials on tailored grids; leveraging massively parallel resources in multiple-copy simulations; and hybrid quantum-mechanical/molecular-mechanical descriptions. We detail the variety of options offered by NAMD for enhanced-sampling simulations aimed at determining free-energy differences of either alchemical or geometrical transformations and outline their applicability to specific problems. Last, we discuss the roadmap for the development of NAMD and our current efforts toward achieving optimal performance on GPU-based architectures, for pushing back the limitations that have prevented biologically realistic billion-atom objects to be fruitfully simulated, and for making large-scale simulations less expensive and easier to set up, run, and analyze. NAMD is distributed free of charge with its source code at www.ks.uiuc.edu.

11.
Parallel Comput ; 1022020 May.
Artigo em Inglês | MEDLINE | ID: mdl-34824485

RESUMO

Conversion of sunlight into chemical energy, namely photosynthesis, is the primary energy source of life on Earth. A visualization depicting this process, based on multiscale computational models from electronic to cell scales, is presented in the form of an excerpt from the fulldome show Birth of Planet Earth. This accessible visual narrative shows a lay audience, including children, how the energy of sunlight is captured, converted, and stored through a chain of proteins to power living cells. The visualization is the result of a multi-year collaboration among biophysicists, visualization scientists, and artists, which, in turn, is based on a decade-long experimental-computational collaboration on structural and functional modeling that produced an atomic detail description of a bacterial bioenergetic organelle, the chromatophore. Software advancements necessitated by this project have led to significant performance and feature advances, including hardware-accelerated cinematic ray tracing and instanced visualizations for efficient cell-scale modeling. The energy conversion steps depicted feature an integration of function from electronic to cell levels, spanning nearly 12 orders of magnitude in time scales. This atomic detail description uniquely enables a modern retelling of one of humanity's earliest stories-the interplay between light and life.

12.
Comput Sci Eng ; 22(6): 11-20, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33510584

RESUMO

Enveloped viruses, such as SARS-CoV-2, infect cells via fusion of their envelope with the host membrane. By employing molecular simulations to characterize viral envelopes, researchers can gain insights into key determinants of infection. Here, the Frontera supercomputer is leveraged for large-scale modeling and analysis of authentic viral envelopes, whose lipid compositions are complex and realistic. Visual Molecular Dynamics (VMD) with support for MPI is employed, overcoming previous computational limitations and enabling investigation into virus biology at an unprecedented scale. The techniques applied here to an authentic HIV-1 envelope at two levels of spatial resolution (29 million particles and 280 million atoms) are broadly applicable to the study of other viruses. The authors are actively employing these techniques to develop and characterize an authentic SARS-CoV-2 envelope. A general framework for carrying out scalable analysis of simulation trajectories on Frontera is presented, expanding the utility of the machine in humanity's ongoing fight against infectious diseases.

13.
Cell ; 179(5): 1098-1111.e23, 2019 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-31730852

RESUMO

We report a 100-million atom-scale model of an entire cell organelle, a photosynthetic chromatophore vesicle from a purple bacterium, that reveals the cascade of energy conversion steps culminating in the generation of ATP from sunlight. Molecular dynamics simulations of this vesicle elucidate how the integral membrane complexes influence local curvature to tune photoexcitation of pigments. Brownian dynamics of small molecules within the chromatophore probe the mechanisms of directional charge transport under various pH and salinity conditions. Reproducing phenotypic properties from atomistic details, a kinetic model evinces that low-light adaptations of the bacterium emerge as a spontaneous outcome of optimizing the balance between the chromatophore's structural integrity and robust energy conversion. Parallels are drawn with the more universal mitochondrial bioenergetic machinery, from whence molecular-scale insights into the mechanism of cellular aging are inferred. Together, our integrative method and spectroscopic experiments pave the way to first-principles modeling of whole living cells.


Assuntos
Células/metabolismo , Metabolismo Energético , Adaptação Fisiológica/efeitos da radiação , Trifosfato de Adenosina/metabolismo , Benzoquinonas/metabolismo , Membrana Celular/metabolismo , Membrana Celular/efeitos da radiação , Células/efeitos da radiação , Cromatóforos/metabolismo , Citocromos c2/metabolismo , Difusão , Transporte de Elétrons/efeitos da radiação , Metabolismo Energético/efeitos da radiação , Meio Ambiente , Ligação de Hidrogênio , Cinética , Luz , Simulação de Dinâmica Molecular , Fenótipo , Proteínas/metabolismo , Rhodobacter sphaeroides/fisiologia , Rhodobacter sphaeroides/efeitos da radiação , Eletricidade Estática , Estresse Fisiológico/efeitos da radiação , Temperatura
14.
J Chem Inf Model ; 59(10): 4328-4338, 2019 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-31525965

RESUMO

Compartmentalization is a central theme in biology. Cells are composed of numerous membrane-enclosed structures, evolved to facilitate specific biochemical processes; viruses act as containers of genetic material, optimized to drive infection. Molecular dynamics simulations provide a mechanism to study biomolecular containers and the influence they exert on their environments; however, trajectory analysis software generally lacks knowledge of container interior versus exterior. Further, many relevant container analyses involve large-scale particle tracking endeavors, which may become computationally prohibitive with increasing system size. Here, a novel method based on 3-D ray casting is presented, which rapidly classifies the space surrounding biomolecular containers of arbitrary shape, enabling fast determination of the identities and counts of particles (e.g., solvent molecules) found inside and outside. The method is broadly applicable to the study of containers and enables high-performance characterization of properties such as solvent density, small-molecule transport, transbilayer lipid diffusion, and topology of protein cavities. The method is implemented in VMD, a widely used simulation analysis tool that supports personal computers, clouds, and parallel supercomputers, including ORNL's Summit and Titan and NCSA's Blue Waters, where the method can be employed to efficiently analyze trajectories encompassing millions of particles. The ability to rapidly characterize the spatial relationships of particles relative to a biomolecular container over many trajectory frames, irrespective of large particle counts, enables analysis of containers on a scale that was previously unfeasible, at a level of accuracy that was previously unattainable.


Assuntos
Lipídeos/química , Proteínas/química , Transporte Biológico , Proteínas do Capsídeo/química , Configuração de Carboidratos , Modelos Moleculares , Simulação de Dinâmica Molecular , Conformação Proteica
15.
Nat Methods ; 15(5): 351-354, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29578535

RESUMO

Hybrid methods that combine quantum mechanics (QM) and molecular mechanics (MM) can be applied to studies of reaction mechanisms in locations ranging from active sites of small enzymes to multiple sites in large bioenergetic complexes. By combining the widely used molecular dynamics and visualization programs NAMD and VMD with the quantum chemistry packages ORCA and MOPAC, we created an integrated, comprehensive, customizable, and easy-to-use suite (http://www.ks.uiuc.edu/Research/qmmm). Through the QwikMD interface, setup, execution, visualization, and analysis are streamlined for all levels of expertise.


Assuntos
Simulação por Computador , Modelos Biológicos , Modelos Químicos , Teoria Quântica , Software , Simulação de Dinâmica Molecular , Eletricidade Estática
16.
J Phys Chem B ; 121(15): 3871-3881, 2017 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-28291359

RESUMO

Cryo-electron tomography (cryo-ET) has rapidly emerged as a powerful tool to investigate the internal, three-dimensional spatial organization of the cell. In parallel, the GPU-based technology to perform spatially resolved stochastic simulations of whole cells has arisen, allowing the simulation of complex biochemical networks over cell cycle time scales using data taken from -omics, single molecule experiments, and in vitro kinetics. By using real cell geometry derived from cryo-ET data, we have the opportunity to imbue these highly detailed structural data-frozen in time-with realistic biochemical dynamics and investigate how cell structure affects the behavior of the embedded chemical reaction network. Here we present two examples to illustrate the challenges and techniques involved in integrating structural data into stochastic simulations. First, a tomographic reconstruction of Saccharomyces cerevisiae is used to construct the geometry of an entire cell through which a simple stochastic model of an inducible genetic switch is studied. Second, a tomogram of the nuclear periphery in a HeLa cell is converted directly to the simulation geometry through which we study the effects of cellular substructure on the stochastic dynamics of gene repression. These simple chemical models allow us to illustrate how to build whole-cell simulations using cryo-ET derived geometry and the challenges involved in such a process.


Assuntos
Microscopia Crioeletrônica , Tomografia com Microscopia Eletrônica , Simulação de Dinâmica Molecular , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/ultraestrutura , Células HeLa , Humanos , Processos Estocásticos
17.
Artigo em Inglês | MEDLINE | ID: mdl-27747137

RESUMO

Large scale molecular dynamics simulations produce terabytes of data that is impractical to transfer to remote facilities. It is therefore necessary to perform visualization tasks in-situ as the data are generated, or by running interactive remote visualization sessions and batch analyses co-located with direct access to high performance storage systems. A significant challenge for deploying visualization software within clouds, clusters, and supercomputers involves the operating system software required to initialize and manage graphics acceleration hardware. Recently, it has become possible for applications to use the Embedded-system Graphics Library (EGL) to eliminate the requirement for windowing system software on compute nodes, thereby eliminating a significant obstacle to broader use of high performance visualization applications. We outline the potential benefits of this approach in the context of visualization applications used in the cloud, on commodity clusters, and supercomputers. We discuss the implementation of EGL support in VMD, a widely used molecular visualization application, and we outline benefits of the approach for molecular visualization tasks on petascale computers, clouds, and remote visualization servers. We then provide a brief evaluation of the use of EGL in VMD, with tests using developmental graphics drivers on conventional workstations and on Amazon EC2 G2 GPU-accelerated cloud instance types. We expect that the techniques described here will be of broad benefit to many other visualization applications.

18.
Artigo em Inglês | MEDLINE | ID: mdl-27747138

RESUMO

Immersive molecular visualization provides the viewer with intuitive perception of complex structures and spatial relationships that are of critical interest to structural biologists. The recent availability of commodity head mounted displays (HMDs) provides a compelling opportunity for widespread adoption of immersive visualization by molecular scientists, but HMDs pose additional challenges due to the need for low-latency, high-frame-rate rendering. State-of-the-art molecular dynamics simulations produce terabytes of data that can be impractical to transfer from remote supercomputers, necessitating routine use of remote visualization. Hardware-accelerated video encoding has profoundly increased frame rates and image resolution for remote visualization, however round-trip network latencies would cause simulator sickness when using HMDs. We present a novel two-phase rendering approach that overcomes network latencies with the combination of omnidirectional stereoscopic progressive ray tracing and high performance rasterization, and its implementation within VMD, a widely used molecular visualization and analysis tool. The new rendering approach enables immersive molecular visualization with rendering techniques such as shadows, ambient occlusion lighting, depth-of-field, and high quality transparency, that are particularly helpful for the study of large biomolecular complexes. We describe ray tracing algorithms that are used to optimize interactivity and quality, and we report key performance metrics of the system. The new techniques can also benefit many other application domains.

19.
Artigo em Inglês | MEDLINE | ID: mdl-27516922

RESUMO

Many of the continuing scientific advances achieved through computational biology are predicated on the availability of ongoing increases in computational power required for detailed simulation and analysis of cellular processes on biologically-relevant timescales. A critical challenge facing the development of future exascale supercomputer systems is the development of new computing hardware and associated scientific applications that dramatically improve upon the energy efficiency of existing solutions, while providing increased simulation, analysis, and visualization performance. Mobile computing platforms have recently become powerful enough to support interactive molecular visualization tasks that were previously only possible on laptops and workstations, creating future opportunities for their convenient use for meetings, remote collaboration, and as head mounted displays for immersive stereoscopic viewing. We describe early experiences adapting several biomolecular simulation and analysis applications for emerging heterogeneous computing platforms that combine power-efficient system-on-chip multi-core CPUs with high-performance massively parallel GPUs. We present low-cost power monitoring instrumentation that provides sufficient temporal resolution to evaluate the power consumption of individual CPU algorithms and GPU kernels. We compare the performance and energy efficiency of scientific applications running on emerging platforms with results obtained on traditional platforms, identify hardware and algorithmic performance bottlenecks that affect the usability of these platforms, and describe avenues for improving both the hardware and applications in pursuit of the needs of molecular modeling tasks on mobile devices and future exascale computers.

20.
Elife ; 52016 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-27383269

RESUMO

Two structure determination methods, based on the molecular dynamics flexible fitting (MDFF) paradigm, are presented that resolve sub-5 Å cryo-electron microscopy (EM) maps with either single structures or ensembles of such structures. The methods, denoted cascade MDFF and resolution exchange MDFF, sequentially re-refine a search model against a series of maps of progressively higher resolutions, which ends with the original experimental resolution. Application of sequential re-refinement enables MDFF to achieve a radius of convergence of ~25 Å demonstrated with the accurate modeling of ß-galactosidase and TRPV1 proteins at 3.2 Å and 3.4 Å resolution, respectively. The MDFF refinements uniquely offer map-model validation and B-factor determination criteria based on the inherent dynamics of the macromolecules studied, captured by means of local root mean square fluctuations. The MDFF tools described are available to researchers through an easy-to-use and cost-effective cloud computing resource on Amazon Web Services.


Assuntos
Microscopia Crioeletrônica/métodos , Processamento de Imagem Assistida por Computador/métodos , Simulação de Dinâmica Molecular , Canais de Cátion TRPV/química , Canais de Cátion TRPV/ultraestrutura , beta-Galactosidase/química , beta-Galactosidase/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...