Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dis Model Mech ; 12(3)2019 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-30923190

RESUMO

Technology has led to rapid progress in the identification of genes involved in neurodevelopmental disorders such as intellectual disability (ID), but our functional understanding of the causative genes is lagging. Here, we show that the SWI/SNF chromatin remodelling complex is one of the most over-represented cellular components disrupted in ID. We investigated the role of individual subunits of this large protein complex using targeted RNA interference in post-mitotic memory-forming neurons of the Drosophila mushroom body (MB). Knockdown flies were tested for defects in MB morphology, short-term memory and long-term memory. Using this approach, we identified distinct roles for individual subunits of the Drosophila SWI/SNF complex. Bap60, Snr1 and E(y)3 are required for pruning of the MBγ neurons during pupal morphogenesis, while Brm and Osa are required for survival of MBγ axons during ageing. We used the courtship conditioning assay to test the effect of MB-specific SWI/SNF knockdown on short- and long-term memory. Several subunits, including Brm, Bap60, Snr1 and E(y)3, were required in the MB for both short- and long-term memory. In contrast, Osa knockdown only reduced long-term memory. Our results suggest that individual components of the SWI/SNF complex have different roles in the regulation of structural plasticity, survival and functionality of post-mitotic MB neurons. This study highlights the many possible processes that might be disrupted in SWI/SNF-related ID disorders. Our broad phenotypic characterization provides a starting point for understanding SWI/SNF-mediated gene regulatory mechanisms that are important for development and function of post-mitotic neurons.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Drosophila melanogaster/metabolismo , Memória , Corpos Pedunculados/inervação , Corpos Pedunculados/metabolismo , Fatores de Transcrição/metabolismo , Envelhecimento/metabolismo , Animais , Corte , Proteínas de Drosophila/metabolismo , Feminino , Genes Dominantes , Deficiência Intelectual/genética , Masculino , Morfogênese , Plasticidade Neuronal
2.
Am J Hum Genet ; 104(4): 596-610, 2019 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-30879640

RESUMO

Mutations in several genes encoding components of the SWI/SNF chromatin remodeling complex cause neurodevelopmental disorders (NDDs). Here, we report on five individuals with mutations in SMARCD1; the individuals present with developmental delay, intellectual disability, hypotonia, feeding difficulties, and small hands and feet. Trio exome sequencing proved the mutations to be de novo in four of the five individuals. Mutations in other SWI/SNF components cause Coffin-Siris syndrome, Nicolaides-Baraitser syndrome, or other syndromic and non-syndromic NDDs. Although the individuals presented here have dysmorphisms and some clinical overlap with these syndromes, they lack their typical facial dysmorphisms. To gain insight into the function of SMARCD1 in neurons, we investigated the Drosophila ortholog Bap60 in postmitotic memory-forming neurons of the adult Drosophila mushroom body (MB). Targeted knockdown of Bap60 in the MB of adult flies causes defects in long-term memory. Mushroom-body-specific transcriptome analysis revealed that Bap60 is required for context-dependent expression of genes involved in neuron function and development in juvenile flies when synaptic connections are actively being formed in response to experience. Taken together, we identify an NDD caused by SMARCD1 mutations and establish a role for the SMARCD1 ortholog Bap60 in the regulation of neurodevelopmental genes during a critical time window of juvenile adult brain development when neuronal circuits that are required for learning and memory are formed.


Assuntos
Proteínas Cromossômicas não Histona/genética , Memória , Transtornos do Neurodesenvolvimento/genética , Neurônios/metabolismo , Animais , Criança , Pré-Escolar , Deficiências do Desenvolvimento/genética , Modelos Animais de Doenças , Proteínas de Drosophila/genética , Drosophila melanogaster , Feminino , Regulação da Expressão Gênica , Humanos , Deficiência Intelectual/genética , Aprendizagem , Masculino , Mitose , Hipotonia Muscular/genética , Corpos Pedunculados , Mutação , Síndrome , Fatores de Transcrição/genética
3.
PLoS Genet ; 13(10): e1006864, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29069077

RESUMO

Kleefstra syndrome, caused by haploinsufficiency of euchromatin histone methyltransferase 1 (EHMT1), is characterized by intellectual disability (ID), autism spectrum disorder (ASD), characteristic facial dysmorphisms, and other variable clinical features. In addition to EHMT1 mutations, de novo variants were reported in four additional genes (MBD5, SMARCB1, NR1I3, and KMT2C), in single individuals with clinical characteristics overlapping Kleefstra syndrome. Here, we present a novel cohort of five patients with de novo loss of function mutations affecting the histone methyltransferase KMT2C. Our clinical data delineates the KMT2C phenotypic spectrum and reinforces the phenotypic overlap with Kleefstra syndrome and other related ID disorders. To elucidate the common molecular basis of the neuropathology associated with mutations in KMT2C and EHMT1, we characterized the role of the Drosophila KMT2C ortholog, trithorax related (trr), in the nervous system. Similar to the Drosophila EHMT1 ortholog, G9a, trr is required in the mushroom body for short term memory. Trr ChIP-seq identified 3371 binding sites, mainly in the promoter of genes involved in neuronal processes. Transcriptional profiling of pan-neuronal trr knockdown and G9a null mutant fly heads identified 613 and 1123 misregulated genes, respectively. These gene sets show a significant overlap and are associated with nearly identical gene ontology enrichments. The majority of the observed biological convergence is derived from predicted indirect target genes. However, trr and G9a also have common direct targets, including the Drosophila ortholog of Arc (Arc1), a key regulator of synaptic plasticity. Our data highlight the clinical and molecular convergence between the KMT2 and EHMT protein families, which may contribute to a molecular network underlying a larger group of ID/ASD-related disorders.


Assuntos
Transtorno do Espectro Autista/genética , Anormalidades Craniofaciais/genética , Proteínas do Citoesqueleto/genética , Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/genética , Cardiopatias Congênitas/genética , Histona-Lisina N-Metiltransferase/genética , Deficiência Intelectual/genética , Proteínas do Tecido Nervoso/genética , Adolescente , Adulto , Animais , Transtorno do Espectro Autista/fisiopatologia , Sítios de Ligação/genética , Criança , Deleção Cromossômica , Cromossomos Humanos Par 9/genética , Receptor Constitutivo de Androstano , Anormalidades Craniofaciais/fisiopatologia , Drosophila melanogaster/genética , Feminino , Regulação da Expressão Gênica , Haploinsuficiência , Cardiopatias Congênitas/fisiopatologia , Histonas/genética , Humanos , Deficiência Intelectual/fisiopatologia , Masculino , Mutação , Plasticidade Neuronal/genética , Regiões Promotoras Genéticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...