Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomedicines ; 12(3)2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38540293

RESUMO

The extent and depth of burn injury may mandate temporary use of cadaver skin (allograft) to protect the wound and allow the formation of granulation tissue while split-thickness skin grafts (STSGs) are serially harvested from the same donor areas. However, allografts are not always available and have a high cost, hence the interest in identifying more economical, readily available products that serve the same function. This study evaluated intact fish skin graft (IFSG) as a temporary cover to prepare the wound bed for STSG application. Thirty-six full-thickness (FT) 5 × 5 cm burn wounds were created on the dorsum of six anesthetized Yorkshire pigs on day -1. To mimic the two-stage clinical situation, on day 0, wounds were excised down to a bleeding wound bed and a temporary cover (either IFSG or cadaver porcine skin) was applied; then, on day 7, wounds were debrided to a viable wound bed prior to the application of autologous 1.5:1 meshed STSG (mSTSG). Rechecks were performed on days 14, 21, 28, 45, and 60 with digital images, non-invasive measurements, and punch biopsies. The IFSG created a granulated wound bed receptive to the application of an mSTSG. FT burn wounds treated with an IFSG had similar outcome measures, including contraction rates, trans-epidermal water loss (TEWL) measurements, hydration, and blood perfusion levels, compared to cadaver skin-treated burn wounds. Pathology scoring indicated significant differences between the allograft- and IFSG-treated wounds on day 7, with the IFSG having increased angiogenesis, granulation tissue formation, and immune cells. Pathology scoring indicated no significant differences once mSTSGs were applied to wounds. The IFSG performed as well as cadaver skin as a temporary cover and was not inferior to the standard of care, suggesting the potential to transition IFSGs into clinical use for burns.

2.
Antioxidants (Basel) ; 12(12)2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38136196

RESUMO

Burn wound healing is a complex process orchestrated through successive biochemical events that span from weeks to months depending on the depth of the wound. Here, we report an untargeted metabolomics discovery approach to capture metabolic changes during the healing of deep partial-thickness (DPT) and full-thickness (FT) burn wounds in a porcine burn wound model. The metabolic changes during healing could be described with six and seven distinct metabolic trajectories for DPT and FT wounds, respectively. Arginine and histidine metabolism were the most affected metabolic pathways during healing, irrespective of burn depth. Metabolic proxies for oxidative stress were different in the wound types, reaching maximum levels at day 14 in DPT burns but at day 7 in FT burns. We examined how acellular fish skin graft (AFSG) influences the wound metabolome compared to other standard-or-care burn wound treatments. We identified changes in metabolites within the methionine salvage pathway, specifically in DPT burn wounds that is novel to the understanding of the wound healing process. Furthermore, we found that AFSGs boost glutamate and adenosine in wounds that is of relevance given the importance of purinergic signaling in regulating oxidative stress and wound healing. Collectively, these results serve to define biomarkers of burn wound healing. These results conclusively contribute to the understanding of the multifactorial mechanism of the action of AFSG that has traditionally been attributed to its structural properties and omega-3 fatty acid content.

3.
Burns ; 48(4): 799-807, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34696954

RESUMO

A critical need exists for early, accurate diagnosis of burn wound severity to help identify the course of treatment and outcome of the wound. Laser speckle imaging (LSI) is a promising blood perfusion imaging approach, but it does not account for changes in tissue optical properties that can occur with burn wounds, which are highly dynamic environments. Here, we studied optical property dynamics following burn injury and debridement and the associated impact on interpretation of LSI measurements of skin perfusion. We used spatial frequency domain imaging (SFDI) measurements of tissue optical properties to study the impact of burn-induced changes in these properties on LSI measurements. An established preclinical porcine model of burn injury was used (n = 8). SFDI and LSI data were collected from burn wounds of varying severity. SFDI measurements demonstrate that optical properties change in response to burn injury in a porcine model. We then apply theoretical modeling to demonstrate that the measured range of optical property changes can affect the interpretation of LSI measurements of blood flow, but this effect is minimal for most of the measured data. Collectively, our results indicate that, even with a dynamic burn wound environment, blood-flow measurements with LSI can serve as an appropriate strategy for accurate assessment of burn severity.


Assuntos
Queimaduras , Animais , Queimaduras/diagnóstico por imagem , Humanos , Imagem de Contraste de Manchas a Laser , Imagem Óptica/métodos , Perfusão , Imagem de Perfusão , Pele/irrigação sanguínea , Pele/diagnóstico por imagem , Suínos
4.
Int J Mol Sci ; 22(4)2021 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-33557424

RESUMO

Thermal injuries are caused by exposure to a variety of sources, and split thickness skin grafts are the gold standard treatment for severe burns; however, they may be impossible when there is no donor skin available. Large total body surface area burns leave patients with limited donor site availability and create a need for treatments capable of achieving early and complete coverage that can also retain normal skin function. In this preclinical trial, two cellular and tissue based products (CTPs) are evaluated on twenty-four 5 × 5 deep partial thickness (DPT) burn wounds. Using appropriate pain control methods, DPT burn wounds were created on six anesthetized Yorkshire pigs. Wounds were excised one day post-burn and the bleeding wound beds were subsequently treated with omega-3-rich acellular fish skin graft (FSG) or fetal bovine dermis (FBD). FSG was reapplied after 7 days and wounds healed via secondary intentions. Digital images, non-invasive measurements, and punch biopsies were acquired during rechecks performed on days 7, 14, 21, 28, 45, and 60. Multiple qualitative measurements were also employed, including re-epithelialization, contraction rates, hydration, laser speckle, and trans-epidermal water loss (TEWL). Each treatment produced granulated tissue (GT) that would be receptive to skin grafts, if desired; however, the FSG induced GT 7 days earlier. FSG treatment resulted in faster re-epithelialization and reduced wound size at day 14 compared to FBD (50.2% vs. 23.5% and 93.1% vs. 106.7%, p < 0.005, respectively). No differences in TEWL measurements were observed. The FSG integrated into the wound bed quicker as evidenced by lower hydration values at day 21 (309.7 vs. 2500.4 µS, p < 0.05) and higher blood flow at day 14 (4.9 vs. 3.1 fold change increase over normal skin, p < 0.005). Here we show that FSG integrated faster without increased contraction, resulting in quicker wound closure without skin graft application which suggests FSG improved burn wound healing over FBD.


Assuntos
Derme Acelular/provisão & distribuição , Queimaduras/cirurgia , Transplante de Pele/métodos , Cicatrização , Animais , Queimaduras/patologia , Feminino , Peixes , Suínos
5.
J Burn Care Res ; 42(1): 98-109, 2021 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-32835360

RESUMO

Deep partial thickness burns are clinically prevalent and difficult to diagnose. In order to develop methods to assess burn depth and therapies to treat deep partial thickness burns, reliable, accurate animal models are needed. The variety of animal models in the literature and the lack of precise details reported for the experimental procedures make comparison of research between investigators challenging and ultimately affect translation to patients. They sought to compare deep partial thickness porcine burn models from five well-established laboratories. In doing so, they uncovered a lack of consistency in approaches to the evaluation of burn injury depth that was present within and among various models. They then used an iterative process to develop a scoring rubric with an educational component to facilitate burn injury depth evaluation that improved reliability of the scoring. Using the developed rubric to re-score the five burn models, they found that all models created a deep partial thickness injury and that agreement about specific characteristics identified on histological staining was improved. Finally, they present consensus statements on the evaluation and interpretation of the microanatomy of deep partial thickness burns in pigs.


Assuntos
Queimaduras/classificação , Consenso , Modelos Animais de Doenças , Animais , Humanos , Suínos
6.
J Burn Care Res ; 41(5): 1015-1028, 2020 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-32615590

RESUMO

Necrotic tissue generated by a thermal injury is typically removed via surgical debridement. However, this procedure is commonly associated with blood loss and the removal of viable healthy tissue. For some patients and contexts such as extended care on the battlefield, it would be preferable to remove devitalized tissue with a nonsurgical debridement agent. In this paper, a proprietary debridement gel (SN514) was evaluated for the ability to debride both deep-partial thickness (DPT) and full-thickness burn wounds using an established porcine thermal injury model. Burn wounds were treated daily for 4 days and visualized with both digital imaging and laser speckle imaging. Strip biopsies were taken at the end of the procedure. Histological analyses confirmed a greater debridement of the porcine burn wounds by SN514 than the vehicle-treated controls. Laser speckle imaging detected significant increases in the perfusion status after 4 days of SN514 treatment on DPT wounds. Importantly, histological analyses and clinical observations suggest that SN514 gel treatment did not damage uninjured tissue as no edema, erythema, or inflammation was observed on intact skin surrounding the treated wounds. A blinded evaluation of the digital images by a burn surgeon indicated that SN514 debrided more necrotic tissue than the control groups after 1, 2, and 3 days of treatment. Additionally, SN514 gel was evaluated using an in vitro burn model that used human discarded skin. Treatment of human burned tissue with SN514 gel resulted in greater than 80% weight reduction compared with untreated samples. Together, these data demonstrate that SN514 gel is capable of debriding necrotic tissue and suggest that SN514 gel could be a useful option for austere conditions, such as military multi-domain operations and prolonged field care scenarios.


Assuntos
Queimaduras/terapia , Desbridamento/métodos , Metaloproteases/uso terapêutico , Animais , Queimaduras/patologia , Modelos Animais de Doenças , Feminino , Hidrogéis , Suínos , Cicatrização
7.
Adv Wound Care (New Rochelle) ; 8(7): 323-340, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31737420

RESUMO

Objective: To develop a cost-effective and clinically usable therapy to treat full-thickness skin injuries. We accomplished this by preparing a viscoelastic hydrogel using polyethylene glycol (PEG)-modified platelet-free plasma (PEGylated PFP) combined with human adipose-derived stem cells (ASCs). Approach: PEGylated PFP hydrogels were prepared by polymerizing the liquid mixture of PEG and PFP±ASCs and gelled either by adding calcium chloride (CaCl2) or thrombin. Rheological and in vitro studies were performed to assess viscoelasticity and the ability of hydrogels to direct ASCs toward a vasculogenic phenotype, respectively. Finally, a pilot study evaluated the efficacy of hydrogels±ASCs using an athymic rat full-thickness skin wound model. Results: Hydrogels prepared within the range of 11 to 27 mM for CaCl2 or 5 to 12.5 U/mL for thrombin exhibited a storage modulus of ∼62 to 87 Pa and ∼47 to 92 Pa, respectively. The PEGylated PFP hydrogels directed ASCs to form network-like structures resembling vasculature, with a fourfold increase in perivascular specific genes that were confirmed by immunofluorescent staining. Hydrogels combined with ASCs exhibited an increase in blood vessel density when applied to excisional rat wounds compared with those treated with hydrogels (110.3 vs. 95.6 BV/mm2; p < 0.05). Furthermore, ASCs were identified in the perivascular region associated with newly forming blood vessels. Innovation: This study demonstrates that PFP modified with PEG along with ASCs can be used to prepare cost-effective stable hydrogels, at the bed-side, to treat extensive skin wounds. Conclusion: These results indicate that PEGylated plasma-based hydrogels combined with ASCs may be a potential regenerative therapy for full-thickness skin wounds.

8.
J Biomed Opt ; 24(7): 1-9, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31313538

RESUMO

There is a need for noninvasive, quantitative methods to characterize wound healing in the context of longitudinal investigations related to regenerative medicine. Such tools have the potential to inform the assessment of wound status and healing progression and aid the development of new treatments. We employed spatial frequency domain imaging (SFDI) to characterize the changes in optical properties of tissue during wound healing progression in a porcine model of split-thickness skin grafts and also in a model of burn wound healing with no graft intervention. Changes in the reduced scattering coefficient measured using SFDI correlated with structural changes reported by histology of biopsies taken concurrently. SFDI was able to measure spatial inhomogeneity in the wounds and predicted heterogeneous healing. In addition, we were able to visualize differences in healing rate, depending on whether a wound was debrided and grafted, versus not debrided and left to heal without intervention apart from topical burn wound care. Changes in the concentration of oxy- and deoxyhemoglobin were also quantified, giving insight into hemodynamic changes during healing.


Assuntos
Queimaduras/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Imagem Óptica/métodos , Pele/diagnóstico por imagem , Transplantes/diagnóstico por imagem , Animais , Feminino , Transplante de Pele , Suínos , Cicatrização/fisiologia
9.
Acta Biomater ; 87: 76-87, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30665019

RESUMO

Despite great advances in skin wound care utilizing grafting techniques, the resulting severe scarring, deformity and ineffective vascularization remains a challenge. Alternatively, tissue engineering of new skin using patient-derived stem cells and scaffolding materials promises to greatly increase the functional and aesthetic outcome of skin wound healing. This work focused on the optimization of a polyethylene glycol modified (PEGylated) platelet-rich plasma (PRP) hydrogel for the protracted release of cytokines, growth factors, and signaling molecules and also the delivery of a provisional physical framework for stem cell angiogenesis. Freshly collected whole blood was utilized to synthesize PEGylated PRP hydrogels containing platelet concentrations ranging from 0 to 200,000 platelets/µl. Hydrogels were characterized using thromboelastography and impedance aggregometry for platelet function and were visualized using scanning electron microscopy. To assess the effects of PEGylated PRP hydrogels on cells, PRP solutions were seeded with human adipose-derived stem cells (ASCs) prior to gelation. Following 14 days of incubation in vitro, increased platelet concentrations resulted in higher ASC proliferation and vascular gene and protein expression (assessed via RT-PCR, ELISA, and immunochemistry). Using a rat skin excision model, wounds treated with PRP + ASC hydrogels increased the number of vessels in the wound by day 8 (80.2 vs. 62.6 vessels/mm2) compared to controls. In conclusion, the proposed PEGylated PRP hydrogel promoted both in vitro and transient in vivo angiogenesis of ASCs for improved wound healing. STATEMENT OF SIGNIFICANCE: Our findings support an innovative means of cellular therapy intervention to improve surgical wound healing in a normal wound model. ASCs seeded within PEGylated PRP could be an efficacious and completely autologous therapy for treating patients who have poorly healing wounds caused by vascular insufficiency, previous irradiation, or full-thickness burns. Because wound healing is a dynamic and complex process, the application of more than one growth factor with ASCs demonstrates an advantageous way of improving healing.


Assuntos
Tecido Adiposo/metabolismo , Células Imobilizadas/metabolismo , Células Imobilizadas/transplante , Hidrogéis/química , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/metabolismo , Neovascularização Fisiológica , Plasma Rico em Plaquetas/química , Tecido Adiposo/citologia , Animais , Células Imobilizadas/citologia , Xenoenxertos , Humanos , Masculino , Células-Tronco Mesenquimais/citologia , Ratos , Ratos Nus
10.
Int J Mol Sci ; 19(10)2018 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-30322172

RESUMO

In vitro cell culture methods are used extensively to study cellular migration, proliferation, and differentiation, which play major roles in wound healing but the results often do not translate to the in vivo environment. One alternative would be to establish an ex vivo model utilizing human discarded skin to evaluate therapies in a more natural setting. The purpose of this study was to institute such a model by creating 'wounds' in the center of a piece of discarded skin and treating them with three different biomaterials: collagen, polyethylene glycol (PEG)-fibrin, or PEG-platelet free plasma (PFP). Explants were cultured for 14 days with supernatant and microscopy images collected every 3 days to assess cytotoxicity and epithelialization. After 14 days, the explants were fixed, sectioned, and stained for cytokeratin-10 (CK-10), alpha-smooth muscle actin (α-SMA), and wheat germ (WG). Compared to controls, similar levels of cytotoxicity were detected for 12 days which decreased slightly at day 14. The PEG-PFP hydrogel-treated wounds epithelialized faster than other treatments at days 6 to 14. A 6-8 cell layer thick CK-10+ stratified epidermis had developed over the PEG-PFP hydrogel and cells co-stained by WG and α-SMA were observed within the hydrogel. An ex vivo model was established that can be used practically to screen different therapies exploring wound healing.


Assuntos
Materiais Biocompatíveis/farmacologia , Hidrogéis/farmacologia , Reepitelização/efeitos dos fármacos , Pele/lesões , Actinas/metabolismo , Materiais Biocompatíveis/química , Humanos , Hidrogéis/química , Queratina-10/metabolismo , Modelos Biológicos , Plasma/química , Polietilenoglicóis/química , Pele/metabolismo , Cicatrização/efeitos dos fármacos
11.
J Biomater Appl ; 33(4): 553-565, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30326802

RESUMO

Chronic wounds complicated by diabetes are a significant clinical issue, and their occurrence is expected to continue to rise due to an increased prevalence of diabetes mellitus, especially type 2 diabetes. Diabetic wounds frequently lead to nonhealing ulcers, and often eventually result in limb amputation due to the high risk of infection of the chronic wound. Here, we present a tissue-engineered treatment that combines a novel electrochemically deposited collagen wound matrix and human adipose-derived stem cells. The matrix fabrication process is optimized for voltage and time, and the final collagen biomaterial is thoroughly characterized. This collagen material possesses high tensile strength, high porosity, and excellent biocompatibility and cellular proliferation capabilities. Human adipose-derived stem cells were seeded onto the collagen wound matrix and this construct is investigated in a full thickness excisional wound in a mouse model of type 2 diabetes. This novel treatment is shown to stimulate excellent healing and tissue regeneration, resulting in increased granulation tissue formation, epidermal thickness, and overall higher quality tissue reformation. Both the collagen wound matrix alone and collagen wound matrix in combination with adipose derived stem cells appeared to be excellent treatments for diabetic skin wounds, and in the future can also be optimized to treat other injuries such as burns, blast injuries, surgical incisions, and other traumatic injuries.


Assuntos
Tecido Adiposo/citologia , Colágeno/química , Diabetes Mellitus Tipo 2/terapia , Células-Tronco/citologia , Cicatrização , Ferimentos e Lesões/terapia , Animais , Linhagem Celular , Proliferação de Células , Sobrevivência Celular , Reagentes de Ligações Cruzadas/química , Diabetes Mellitus Experimental/fisiopatologia , Diabetes Mellitus Experimental/terapia , Diabetes Mellitus Tipo 2/fisiopatologia , Técnicas Eletroquímicas , Tecido de Granulação/fisiopatologia , Humanos , Camundongos , Fenômenos Físicos , Porosidade , Regeneração , Pele/fisiopatologia , Transplante de Células-Tronco , Ferimentos e Lesões/fisiopatologia
12.
Stem Cells Transl Med ; 7(4): 360-372, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29457376

RESUMO

Harvesting of autografts results in donor site morbidities and is limited in scenarios such as large total body surface area burns. In these instances, coverage is increased by meshing grafts at the expense of delayed biologic closure. Moreover, graft meshing increases the likelihood of contraction and hypertrophic scarring, limits range of motion, and worsens cosmesis. Many tissue engineering technologies have touted the promise of adipose-derived stem cells (ASCs) for burn wounds. The primary objective of the current study was to determine feasibility and efficacy of in situ ASC delivery via PEGylated fibrin (FPEG) hydrogels as adjuncts to meshed split thickness skin grafts in a porcine model. Deep partial thickness burns were created on the dorsum of anesthetized Yorkshire pigs, and subsequently debrided on post-burn day 4. After debridement, wounds were treated with: split thickness skin grafts (STSG); meshed STSG (mSTSG); and mSTSG + FPEG with increasing doses of ASCs. We show that FPEG hydrogels can be delivered in situ to prevent the contraction seen after meshing of STSG. Moreover, ASCs delivered in FPEG dose-dependently increase blood vessel size which significantly correlates with CD31 protein levels. The current study reports a dual-action adjunct therapy to autografting administered in situ, wherein FPEG acts as both scaffolding to prevent contraction, and as a delivery vehicle for ASCs to accelerate angiogenesis. This strategy may be used to incorporate other biologics for generating tissue engineered products aimed at improving wound healing and minimizing donor sites or scarring. Stem Cells Translational Medicine 2018;7:360-372.


Assuntos
Adipócitos/citologia , Autoenxertos/citologia , Queimaduras/terapia , Fibrina/administração & dosagem , Hidrogéis/administração & dosagem , Polietilenoglicóis/química , Células-Tronco/citologia , Animais , Materiais Biocompatíveis/química , Cicatriz/terapia , Desbridamento/métodos , Feminino , Pele/citologia , Transplante de Pele/métodos , Suínos , Transplante Autólogo/métodos , Cicatrização/fisiologia
13.
Stem Cells Int ; 2017: 7108458, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29138638

RESUMO

Stem cells derived from the subcutaneous adipose tissue of debrided burned skin represent an appealing source of adipose-derived stem cells (ASCs) for regenerative medicine. Traditional tissue culture uses fetal bovine serum (FBS), which complicates utilization of ASCs in human medicine. Human platelet lysate (hPL) is one potential xeno-free, alternative supplement for use in ASC culture. In this study, adipogenic and osteogenic differentiation in media supplemented with 10% FBS or 10% hPL was compared in human ASCs derived from abdominoplasty (HAP) or from adipose associated with debrided burned skin (BH). Most (95-99%) cells cultured in FBS were stained positive for CD73, CD90, CD105, and CD142. FBS supplementation was associated with increased triglyceride content and expression of adipogenic genes. Culture in hPL significantly decreased surface staining of CD105 by 31% and 48% and CD142 by 27% and 35% in HAP and BH, respectively (p < 0.05). Culture of BH-ASCs in hPL also increased expression of markers of osteogenesis and increased ALP activity. These data indicate that application of ASCs for wound healing may be influenced by ASC source as well as culture conditions used to expand them. As such, these factors must be taken into consideration before ASCs are used for regenerative purposes.

14.
Plast Reconstr Surg Glob Open ; 4(12): e1140, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28293502

RESUMO

BACKGROUND: The development of flap necrosis distally remains a concern during microsurgical flap transfers because, at least in part, of decreased perfusion. Microvascular fragments (MVFs) are microvessels isolated from adipose tissue that are capable of improving tissue perfusion in a variety of tissue defects. The aim of this study was to determine whether the transplantation of MVFs in a dorsal rat skin flap model can improve flap survival. METHODS: A 10 × 3 cm flap was raised in a cranial to caudal fashion on the dorsal side of 16 Lewis rats, with the caudal side remaining intact. The rats were equally divided into a treatment group (MVFs) and a control group (sterile saline). At the time of surgery, sterile saline with or without MVFs was injected directly into the flap. Microvessel density was determined after harvesting flap tissue by counting vessels that positively stained for Griffonia simplicifolia lectin I-isolectin B4. Laser Doppler was used to measure blood flow before and after surgery and 7 and 14 days later. Flap survival was evaluated 7 and 14 days after surgery by evaluating the percentage of viable tissue of the flap with photodigital planimetry. RESULTS: Despite the lack of a significant difference in microvessel density and tissue perfusion, flap survival increased 6.4% (P < 0.05) in MVF-treated animals compared with controls. CONCLUSIONS: The use of MVFs may be a means to improve flap survival. Future studies are required to delineate mechanisms whereby this occurs and to further optimize their application.

15.
J Urol ; 185(5): 1952-8, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21421225

RESUMO

PURPOSE: Bladder problems clinically present early in life as birth defects that often lead to kidney failure and late in life as overactive bladder, incontinence and related disorders. We investigated the transcriptome of mouse bladder mucosa at juvenile and adult stages by microarray to identify the pathways associated with normal, healthy growth and maturation. We hypothesized that understanding these pathways could be key to achieving bladder regeneration or reawakening normal function in the elderly population. MATERIALS AND METHODS: RNA was isolated from the mucosa at 3, 6, 20 and 30 weeks postnatally. Affymetrix® Mouse 430 v2 arrays were used to profile the expression of approximately 45,000 genes. The software program Statistical Analysis of Microarrays was used to identify genes that significantly changed during the time course. RESULTS: No genes were significantly up-regulated during maturation. However, 66 well annotated genes demonstrated a statistically significant downward trend, of which 10 of 10 were confirmed by quantitative polymerase chain reaction. The main functions affected by age were transcription, regulation of cellular processes, neurogenesis, blood vessel development and cell differentiation. Notable genes included collagens, Mmp2, SPARC and several transcription factors, including Crebbp, Runx1, Klf9, Mef2c, Nrp1, Pex1 and Tcf4. These molecules were indirectly regulated by inferred Tgfb1 and Egf growth factors. Analysis of gene promoter regions for overrepresented upstream transcription factor binding sites identified specificity protein 1 and epidermal growth factor receptor-specific transcription factor as potentially major transcriptional regulators driving maturation related changes. CONCLUSIONS: These findings identify a coherent set of genes that appear to be down-regulated during urothelial maturation. These genes may represent an attractive target for bladder regeneration or for treating age related loss of function.


Assuntos
Expressão Gênica , Bexiga Urinária/crescimento & desenvolvimento , Fatores Etários , Animais , Regulação para Baixo , Peptídeos e Proteínas de Sinalização Intercelular/genética , Camundongos , Análise em Microsséries , Regiões Promotoras Genéticas/genética , RNA/análise , Fatores de Transcrição/genética
16.
Physiol Genomics ; 43(1): 43-56, 2011 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-20923862

RESUMO

Dextran sodium sulfate (DSS)-induced colitis is widely used to study pathological mechanisms and potential treatments of inflammatory bowel disease. Because temporal changes in genome expression profiles remain unknown in this model, we performed whole genome expression profile analysis during the development of DSS colitis in comparison with ulcerative colitis (UC) specimens to identify novel and common responses during disease. Colon tissue from DSS-treated mice was collected at days 0, 2, 4, and 6. Half of each specimen was used for histopathological analysis and half for Affymetrix whole genome expression profiling and qRT-PCR validation. Genesifter and Ingenuity software analysis was used to identify differentially expressed genes and perform interactive network analysis. Identified DSS-associated genes in mice were also compared with UC patient data. We identified 1,609 genes that were significantly altered during DSS colitis; the majority were functionally related to inflammation, angiogenesis, metabolism, biological adhesion, cellular growth and proliferation, and cell-to-cell signaling responses. Five hundred and one genes were progressively upregulated, while one hundred seventy-three genes were progressively downregulated. Changes in gene expression were validated in a subset of 33 genes by qRT-PCR, with r(2) = 0.925. Ingenuity gene interaction network analysis revealed novel relationships among antigen presentation, cell morphology, and other biological functions in the DSS mouse. Finally, DSS colitis gene array data were compared with UC patient array data: 152 genes were similarly upregulated, and 22 genes were downregulated. Temporal genomewide expression profile analysis of DSS-induced colitis revealed novel associations with various immune responses and tissue remodeling events such as angiogenesis similar to those in UC patients. This study provides a comprehensive view of DSS colitis changes in colon gene expression and identifies common molecules with clinical specimens that are interesting targets for further investigation.


Assuntos
Colite/genética , Sulfato de Dextrana/toxicidade , Perfilação da Expressão Gênica/métodos , Animais , Colite/induzido quimicamente , Colite Ulcerativa/genética , Doenças Inflamatórias Intestinais/genética , Camundongos , Camundongos Endogâmicos C57BL , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase
17.
Brain Res ; 1346: 1-13, 2010 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-20580636

RESUMO

GABA (gamma-aminobutyric acid) is the primary inhibitory neurotransmitter in brain. The fast inhibitory effect of GABA is mediated through the GABA(A) receptor, a postsynaptic ligand-gated chloride channel. We propose that GABA can act as a ligand chaperone in the early secretory pathway to facilitate GABA(A) receptor cell surface expression. Forty-two hours of GABA treatment increased the surface expression of recombinant receptors expressed in HEK 293 cells, an effect accompanied by an increase in GABA-gated chloride currents. In time-course experiments, a 1h GABA exposure, followed by a 5h incubation in GABA-free medium, was sufficient to increase receptor surface expression. A shorter GABA exposure could be used in HEK 293 cells stably transfected with the GABA transporter GAT-1. In rGAT-1HEK 293 cells, the GABA effect was blocked by the GAT-1 inhibitor NO-711, indicating that GABA was acting intracellularly. The effect of GABA was prevented by brefeldin A (BFA), an inhibitor of early secretory pathway trafficking. Coexpression of GABA(A) receptors with the GABA synthetic enzyme glutamic acid decarboxylase 67 (GAD67) also resulted in an increase in receptor surface levels. GABA treatment failed to promote the surface expression of GABA binding site mutant receptors, which themselves were poorly expressed at the surface. Consistent with an intracellular action of GABA, we show that GABA does not act by stabilizing surface receptors. Furthermore, GABA treatment rescued the surface expression of a receptor construct that was retained within the secretory pathway. Lastly, the lipophilic competitive antagonist (+)bicuculline promoted receptor surface expression, including the rescue of a secretory pathway-retained receptor. Our results indicate that a neurotransmitter can act as a ligand chaperone in the early secretory pathway to regulate the surface expression of its receptor. This effect appears to rely on binding site occupancy, rather than agonist-induced structural changes, since chaperoning is observed with both an agonist and a competitive antagonist.


Assuntos
Chaperonas Moleculares/fisiologia , Receptores de Superfície Celular/biossíntese , Receptores de GABA-A/biossíntese , Ácido gama-Aminobutírico/fisiologia , Bicuculina/farmacologia , Brefeldina A/farmacologia , Retículo Endoplasmático/fisiologia , Citometria de Fluxo , Antagonistas GABAérgicos/farmacologia , Proteínas da Membrana Plasmática de Transporte de GABA/metabolismo , Antagonistas de Receptores de GABA-A , Glutamato Descarboxilase/biossíntese , Glutamato Descarboxilase/genética , Humanos , Ligantes , Mutação/genética , Receptores de Superfície Celular/efeitos dos fármacos , Receptores de GABA-A/efeitos dos fármacos
18.
Cancer Prev Res (Phila) ; 3(6): 776-86, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20501863

RESUMO

Transitional cell carcinoma (TCC) of the bladder ranks fourth in incidence of all cancers in the developed world, yet the mechanisms of its origin and progression remain poorly understood. There are also few useful diagnostic or prognostic biomarkers for this disease. We have combined a transgenic mouse model for invasive bladder cancer (UPII-SV40Tag mice) with DNA microarray technology to determine molecular mechanisms involved in early TCC development and to identify new biomarkers for detection, diagnosis, and prognosis of TCC. We have identified genes that are differentially expressed between the bladders of UPII-SV40Tag mice and their age-matched wild-type littermates at 3, 6, 20, and 30 weeks of age. These are ages that correspond to premalignant, carcinoma in situ, and early-stage and later stage invasive TCC, respectively. Our preliminary analysis of the microarray data sets has revealed approximately 1,900 unique genes differentially expressed (> or =3-fold difference at one or more time points) between wild-type and UPII-SV40Tag urothelium during the time course of tumor development. Among these, there were a high proportion of cell cycle regulatory genes and a proliferation signaling genes that are more strongly expressed in the UPII-SV40Tag bladder urothelium. We show that several of the genes upregulated in UPII-SV40Tag urothelium, including RacGAP1, PCNA, and Hmmr, are expressed at high levels in superficial bladder TCC patient samples. These findings provide insight into the earliest events in the development of bladder TCC as well as identify several promising early-stage biomarkers.


Assuntos
Carcinoma in Situ/genética , Carcinoma de Células de Transição/genética , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Genes Neoplásicos , Proteínas de Neoplasias/genética , Neoplasias da Bexiga Urinária/genética , Animais , Carcinoma in Situ/metabolismo , Carcinoma in Situ/patologia , Carcinoma de Células de Transição/metabolismo , Carcinoma de Células de Transição/patologia , Proteínas de Ciclo Celular/biossíntese , Proteínas de Ciclo Celular/genética , Modelos Animais de Doenças , Progressão da Doença , Redes Reguladoras de Genes , Humanos , Hiperplasia , Imageamento por Ressonância Magnética , Camundongos , Camundongos Transgênicos , Proteínas de Neoplasias/biossíntese , Análise de Sequência com Séries de Oligonucleotídeos , Lesões Pré-Cancerosas/genética , Lesões Pré-Cancerosas/metabolismo , Lesões Pré-Cancerosas/patologia , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , RNA Neoplásico/biossíntese , RNA Neoplásico/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Doenças da Bexiga Urinária/genética , Doenças da Bexiga Urinária/metabolismo , Doenças da Bexiga Urinária/patologia , Neoplasias da Bexiga Urinária/metabolismo , Neoplasias da Bexiga Urinária/patologia , Urotélio/metabolismo , Urotélio/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...