Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ground Water ; 56(6): 934-946, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29361651

RESUMO

Variations in permeability have been found to significantly affect the flow of water though hyporheic systems, especially in regions with discontinuous transitions between distinct streambed lithologies. In this study, we probabilistically arranged two sediments (sand and sandy gravel) in a grid framework and imposed a single hyporheic flow cell across the grid to investigate how discontinuous permeability fields influence volumetric flow and residence time distributions. We used both a physical system and computer simulations to model flow through this sediment grid. A solution of blue dye and salt was pumped into the system and used to detect flow. We recorded the dye location using time-lapse photography and measured the electrolytic conductivity levels as the water exited the system as a proxy for salt concentration. We also used a computer simulation to calculate dye-fronts, residence times, and exiting salt concentrations for the modeled system. Comparison between simulations and physical measurements yielded strong agreement. In further simulations with 300 different grids, we found a strong correlation between volumetric flow rate and the placement of high permeability grid cells in regions of high hydraulic head gradients. One implication is that small anomalies in streambed permeability have a disproportionately large influence on hyporheic flows when located near steep head gradients such as steps. We also used moving averages with varying window sizes to investigate the effect of the abruptness of transitions between sediment types. We found that smoother permeability fields increased the volumetric flow rate and decreased the median residence times.


Assuntos
Água Subterrânea , Movimentos da Água , Simulação por Computador , Sedimentos Geológicos , Rios
2.
J Vis Exp ; (105)2015 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-26651065

RESUMO

Advective exchange between the pore space of sediments and the overlying water column, called hyporheic exchange in fluvial environments, drives solute transport in rivers and many important biogeochemical processes. To improve understanding of these processes through visual demonstration, we created a hyporheic flow simulation in the multi-agent computer modeling platform NetLogo. The simulation shows virtual tracer flowing through a streambed covered with two-dimensional bedforms. Sediment, flow, and bedform characteristics are used as input variables for the model. We illustrate how these simulations match experimental observations from laboratory flume experiments based on measured input parameters. Dye is injected into the flume sediments to visualize the porewater flow. For comparison virtual tracer particles are placed at the same locations in the simulation. This coupled simulation and lab experiment has been used successfully in undergraduate and graduate laboratories to directly visualize river-porewater interactions and show how physically-based flow simulations can reproduce environmental phenomena. Students took photographs of the bed through the transparent flume walls and compared them to shapes of the dye at the same times in the simulation. This resulted in very similar trends, which allowed the students to better understand both the flow patterns and the mathematical model. The simulations also allow the user to quickly visualize the impact of each input parameter by running multiple simulations. This process can also be used in research applications to illustrate basic processes, relate interfacial fluxes and porewater transport, and support quantitative process-based modeling.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...