Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Front Oncol ; 3: 184, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23875173

RESUMO

Despite on-going research, metastatic melanoma survival rates remain low and treatment options are limited. Researchers can now access a rapidly growing amount of molecular and clinical information about melanoma. This information is becoming difficult to assemble and interpret due to its dispersed nature, yet as it grows it becomes increasingly valuable for understanding melanoma. Integration of this information into a comprehensive resource to aid rational experimental design and patient stratification is needed. As an initial step in this direction, we have assembled a web-accessible melanoma database, MelanomaDB, which incorporates clinical and molecular data from publically available sources, which will be regularly updated as new information becomes available. This database allows complex links to be drawn between many different aspects of melanoma biology: genetic changes (e.g., mutations) in individual melanomas revealed by DNA sequencing, associations between gene expression and patient survival, data concerning drug targets, biomarkers, druggability, and clinical trials, as well as our own statistical analysis of relationships between molecular pathways and clinical parameters that have been produced using these data sets. The database is freely available at http://genesetdb.auckland.ac.nz/melanomadb/about.html. A subset of the information in the database can also be accessed through a freely available web application in the Illumina genomic cloud computing platform BaseSpace at http://www.biomatters.com/apps/melanoma-profiler-for-research. The MelanomaDB database illustrates dysregulation of specific signaling pathways across 310 exome-sequenced melanomas and in individual tumors and identifies the distribution of somatic variants in melanoma. We suggest that MelanomaDB can provide a context in which to interpret the tumor molecular profiles of individual melanoma patients relative to biological information and available drug therapies.

2.
Methods Mol Biol ; 858: 255-67, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22684960

RESUMO

Information capture pertaining to the "what?", "where?", and "when?" of biodiversity data is critical to maintain data integrity, interoperability, and utility. Moreover, DNA barcoding and other biodiversity studies must adhere to agreed upon data standards in order to effectively contextualize the biota encountered. A field information management system (FIMS) is presented that locks down metadata associated with collecting events, specimens, and tissues. Emphasis is placed on ease of use and flexibility of operation. Standardized templates for data entry are validated through a flexible, project-oriented validation process that assures adherence to data standards and thus data quality. Furthermore, we provide export functionality to existing cloud-based solutions, including Google Fusion Tables and Flickr to allow sharing of these data elements across research collaboration teams and other potential data harvesters via API services.


Assuntos
Código de Barras de DNA Taxonômico/métodos , Sistemas de Gerenciamento de Base de Dados , Gestão da Informação , Sistemas de Informação , Código de Barras de DNA Taxonômico/normas , Gestão da Informação/normas , Sistemas de Informação/normas
3.
Methods Mol Biol ; 858: 269-310, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22684961

RESUMO

In the field of molecular biology, laboratory information management systems (LIMSs) have been created to track workflows through a process pipeline. For the purposes of DNA barcoding, this workflow involves tracking tissues through extraction, PCR, cycle sequencing, and consensus assembly. Importantly, a LIMS that serves the DNA barcoding community must link required elements for public submissions (e.g., primers, trace files) that are generated in the molecular lab with specimen metadata. Here, we demonstrate an example workflow of a specimen's entry into the LIMS database to the publishing of the specimen's genetic data to a public database using Geneious bioinformatics software. Throughout the process, the connections between steps in the workflow are maintained to facilitate post-processing annotation, structured reporting, and fully transparent edits to reduce subjectivity and increase repeatability.


Assuntos
Sistemas de Informação em Laboratório Clínico , Código de Barras de DNA Taxonômico/métodos , Sistemas de Informação em Laboratório Clínico/normas , Biologia Computacional , Reação em Cadeia da Polimerase , Software
4.
Bioinformatics ; 28(12): 1647-9, 2012 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-22543367

RESUMO

UNLABELLED: The two main functions of bioinformatics are the organization and analysis of biological data using computational resources. Geneious Basic has been designed to be an easy-to-use and flexible desktop software application framework for the organization and analysis of biological data, with a focus on molecular sequences and related data types. It integrates numerous industry-standard discovery analysis tools, with interactive visualizations to generate publication-ready images. One key contribution to researchers in the life sciences is the Geneious public application programming interface (API) that affords the ability to leverage the existing framework of the Geneious Basic software platform for virtually unlimited extension and customization. The result is an increase in the speed and quality of development of computation tools for the life sciences, due to the functionality and graphical user interface available to the developer through the public API. Geneious Basic represents an ideal platform for the bioinformatics community to leverage existing components and to integrate their own specific requirements for the discovery, analysis and visualization of biological data. AVAILABILITY AND IMPLEMENTATION: Binaries and public API freely available for download at http://www.geneious.com/basic, implemented in Java and supported on Linux, Apple OSX and MS Windows. The software is also available from the Bio-Linux package repository at http://nebc.nerc.ac.uk/news/geneiousonbl.


Assuntos
Biologia Computacional/métodos , Análise de Sequência de DNA/métodos , Software , Algoritmos , Sequência de Bases , Linguagens de Programação , Interface Usuário-Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...