Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 13(5)2023 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-36903752

RESUMO

In the present study CeO2, MnO2 and CeMnOx mixed oxide (with molar ratio Ce/Mn = 1) were prepared by sol-gel method using citric acid as a chelating agent and calcined at 500 °C. The silver catalysts (1 wt.% Ag) over the obtained supports were synthesized by the incipient wetness impregnation method with [Ag(NH3)2]NO3 aqueous solution. The selective catalytic reduction of NO by C3H6 was investigated in a fixed-bed quartz reactor using a reaction mixture composed of 1000 ppm NO, 3600 ppm C3H6, 10 vol.% O2, 2.9 vol.% H2 and He as a balance gas, at WHSV of 25,000 mL g-1 h-1.The physical-chemical properties of the as-prepared catalysts were studied by several characterization techniques, such as X-ray fluorescence analysis, nitrogen adsorption/desorption, X-ray analysis, Raman spectroscopy, transmission electron microscopy with analysis of the surface composition by X-ray energy dispersive spectroscopy and X-ray photo-electron spectroscopy. Silver oxidation state and its distribution on the catalysts surface as well as the support microstructure are the main factors determining the low temperature activity in NO selective catalytic reduction. The most active Ag/CeMnOx catalyst (NO conversion at 300 °C is 44% and N2 selectivity is ~90%) is characterized by the presence of the fluorite-type phase with high dispersion and distortion. The characteristic "patchwork" domain microstructure of the mixed oxide along with the presence of dispersed Ag+/Agnδ+ species improve the low-temperature catalyst of NO reduction by C3H6 performance compared to Ag/CeO2 and Ag/MnOx systems.

2.
Nanomaterials (Basel) ; 13(3)2023 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-36770506

RESUMO

Ni supported on N-doped carbon is rarely studied in traditional catalytic reactions. To fill this gap, we compared the structure of 1 and 6 wt% Ni species on porous N-free and N-doped carbon and their efficiency in hydrogen generation from gaseous formic acid. On the N-free carbon support, Ni formed nanoparticles with a mean size of 3.2 nm. N-doped carbon support contained Ni single-atoms stabilized by four pyridinic N atoms (N4-site) and sub-nanosized Ni clusters. Density functional theory calculations confirmed the clustering of Ni when the N4-sites were fully occupied. Kinetic studies revealed the same specific Ni mass-based reaction rate for single-atoms and clusters. The N-doped catalyst with 6 wt% of Ni showed higher selectivity in hydrogen production and did not lose activity as compared to the N-free 6 wt% Ni catalyst. The presented results can be used to develop stable Ni catalysts supported on N-doped carbon for various reactions.

3.
Phys Chem Chem Phys ; 25(4): 2862-2874, 2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36625349

RESUMO

The local structure of the active sites is one of the key aspects of establishing the nature of the catalytic activity of the systems. In this work, a detailed structural investigation of the Rh-CeO2 catalysts prepared by the co-precipitation method was carried out. The application of a variety of physicochemical methods such as XRD, Raman spectroscopy, XPS, TEM, TPR-H2, and XAS revealed the presence of highly dispersed Rh3+ species in the catalysts: Rh3+ single ions and RhOx clusters. The substitution of Ce4+ ions by Rh3+ species, which provided a strong distortion of the CeO2 lattice, is shown. XAS data ensured the refinement of the Rh local structure. It was shown that single Rh3+ sites located next to each other can merge the formation of RhOx clusters with Rh local environment close to the one in Rh2O3 and CeRh2O5 oxides. The distortion of the CeO2 lattice around single and cluster rhodium species had a beneficial effect on the catalytic activity of the samples in low-temperature CO oxidation (LTO-CO). TEM, XAS, and in situ XRD data allowed establishing the structural transformations of the catalysts under Red-Ox treatments. The reduction treatment led to Rhn metallic cluster formation localized on defects of the reduced CeO2-δ. The reduced sample demonstrated efficient CO conversion at 0 °C. However, this system was not stable: its contact with air led to ceria reoxidation and partial reoxidation of Rh to highly dispersed Rh3+ species at room temperature, while heating in an oxidizing atmosphere resulted in the complete reoxidation of metallic rhodium species. The results of the work shed light on the structural aspects of the reversibility of the Rh-CeO2 catalysts based on the highly dispersed Rh3+ species under treatment in the reaction conditions.

4.
Nanomaterials (Basel) ; 12(18)2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36144993

RESUMO

Ce1-xZrxO2 oxides (x = 0.1, 0.25, 0.5) prepared via the Pechini route were investigated using XRD analysis, N2 physisorption, TEM, and TPR in combination with density functional theory calculations. The Ni/Ce1-xZrxO2 catalysts were characterized via XRD analysis, SEM-EDX, TEM-EDX, and CO chemisorption and tested in carbon dioxide methanation. The obtained Ce1-xZrxO2 materials were single-phase solid solutions. The increase in Zr content intensified crystal structure strains and favored the reducibility of the Ce1-xZrxO2 oxides but strongly affected their microstructure. The catalytic activity of the Ni/Ce1-xZrxO2 catalysts was found to depend on the composition of the Ce1-xZrxO2 supports. The detected negative effect of Zr content on the catalytic activity was attributed to the decrease in the dispersion of the Ni0 nanoparticles and the length of metal-support contacts due to the worsening microstructure of Ce1-xZrxO2 oxides. The improvement of the redox properties of the Ce1-xZrxO2 oxide supports through cation modification can be negated by changes in their microstructure and textural characteristics.

5.
Front Chem ; 7: 858, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31921779

RESUMO

In this work, we elaborated heterogeneous catalysts on the basis of the Venturello complex [PO4{WO(O2)2}4]3- (PW4) and nitrogen-free or nitrogen-doped carbon nanotubes (CNTs or N-CNTs) for epoxidation of alkenes and sulfoxidation of thioethers with aqueous hydrogen peroxide. Catalysts PW4/CNTs and PW4/N-CNTs (1.8 at. % N) containing 5-15 wt. % of PW4 and differing in acidity have been prepared and characterized by elemental analysis, N2 adsorption, IR spectroscopy, HR-TEM, and HAADF-STEM. Studies by STEM in HAADF mode revealed a quasi-molecular dispersion of PW4 on the surface of CNTs. The addition of acid during the immobilization is not obligatory to ensure site isolation and strong binding of PW4 on the surface of CNTs, but it allows one to increase the PW4 loading and affects both catalytic activity and product selectivity. Catalytic performance of the supported PW4 catalysts was evaluated in H2O2-based oxidation of two model substrates, cyclooctene and methyl phenyl sulfide, under mild conditions (25-50°C). The best results in terms of activity and selectivity were obtained using PW4 immobilized on N-free CNTs in acetonitrile or dimethyl carbonate as solvents. Catalysts PW4/CNTs can be applied for selective oxidation of a wide range of alkenes and thioethers provided a balance between activity and selectivity of the catalyst is tuned by a careful control of the amount of acid added during the immobilization of PW4. Selectivity, conversion, and turnover frequencies achieved in epoxidations over PW4/CNTs catalysts are close to those reported in the literature for homogeneous systems based on PW4. IR spectroscopy confirmed the retention of the Venturello structure after use in the catalytic reactions. The elaborated catalysts are stable to metal leaching, show a truly heterogeneous nature of the catalysis, can be easily recovered by filtration, regenerated by washing and evacuation, and then reused several times without loss of the catalytic performance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...