Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 61(6): 2276-85, 1995 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16535048

RESUMO

DNA fragments harboring the nickel resistance determinants from bacteria isolated from anthropogenically polluted ecosystems in Europe and Zaire were compared with those harboring the nickel resistance determinants from bacteria isolated from naturally nickel-percolated soils from New Caledonia by DNA-DNA hybridization. The biotinylated DNA probes were derived from the previously described Alcaligenes eutrophus CH34, Alcaligenes xylosoxidans 31A, Alcaligenes denitrificans 4a-2, and Klebsiella oxytoca CCUG 15788 and four new nickel resistance-determining fragments cloned from strains isolated from soils under nickel-hyperaccumulating trees. Nine probes were hybridized with endonuclease-cleaved plasmid and total DNA samples from 56 nickel-resistant strains. Some of the New Caledonian strains were tentatively identified as Acinetobacter, Pseudomonas mendocina, Comamonas, Hafnia alvei, Burkholderia, Arthrobacter aurescens, and Arthrobacter ramosus strains. The DNA of most strains showed homologies to one or several of the following nickel resistance determinants: the cnr and ncc operons of the strains A. eutrophus CH34 and A. xylosoxidans 31A, respectively, the nre operon of strain 31A, and the nickel resistance determinants of K. oxytoca. On the basis of their hybridization reactions the nickel resistance determinants of the strains could be assigned to four groups: (i) cnr/ncc type, (ii) cnr/ncc/nre type, (iii) K. oxytoca type, and (iv) others. The majority of the strains were assigned to the known groups. Among the strains from Belgium and Zaire, exclusively the cnr/ncc and the cnr/ncc/nre types were found. Among the New Caledonian strains all four types were represented. Homologies to the nre operon were found only in combination with the cnr/ncc operon. The homologies to the cnr/ncc operon were the most abundant and were detected alone or together with homologies to the nre operon. Only the DNA of the strains isolated from soil in Scotland and the United States and that of five of the New Caledonian strains did not show any detectable homologies to any of our probes. The nickel resistance fragment isolated from Burkholderia strain 32W-2 was studied in some detail. This 15-kb BamHI fragment conferred resistance to 1 to 5 mM NiCl(inf2) to Escherichia coli and resistance to up to 25 mM NiCl(inf2) to A. eutrophus. It showed strong homologies to both the cnr/ncc operon and the nre operon and conferred strictly regulated (inducible) nickel resistance to A. eutrophus.

2.
Biometals ; 8(1): 70-9, 1995 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-7865994

RESUMO

Klebsiella oxytoca strain CCUG 15788, isolated from a mineral oil emulsion tank in Göteborg, Sweden, was found to be nickel-resistant (tolerating 10 mM NiCl2 in non-complexing mineral-gluconate media; inducible resistance). The nickel resistance determinants were transferred by helper-assisted conjugation to various strains of Escherichia coli and Citrobacter freundii and expressed to between 5 and 10 mM NiCl2. A 4.3 kb HindIII fragment was cloned from the genomic DNA of K. oxytoca. Ligated into the vector pSUP202, the fragment caused constitutive nickel resistance (of up to 3 or 10 mM Ni2+) in various E. coli strains. After cloning into the broad host range vector pVDZ'2 the fragment even expressed low nickel resistance in the transconjugant of Alcaligenes eutrophus AE104. With the 4.3 kb HindIII fragment as a biotinylated DNA probe it was shown by DNA-DNA hybridization that the nickel resistance determinant resides on the chromosome of K. oxytoca and not on its circular plasmid pKO1 (160 kb) or linear plasmid pKO2 (50 kb). Nickel resistance strongly correlated with the presence of the 4.3 kb HindIII fragment in the transconjugants. No homologies were detected when the nickel resistance determinants of other well-known nickel-resistant bacteria, such as A. eutrophus CH34 or A. denitrificans 4a-2, were used as target DNA. Among the 60 strains examined, positive signals only appeared with the 3.1 kb DNA fragment from A. xylosoxydans 31A and the genomic DNA of two enterobacterial strains (5-1 and 5-5) isolated from nickel-rich soil in New Caledonia.


Assuntos
Conjugação Genética , DNA Bacteriano/genética , Resistência Microbiana a Medicamentos/genética , Klebsiella/efeitos dos fármacos , Klebsiella/genética , Metais/farmacologia , Níquel/farmacologia , Clonagem Molecular , Cobre/farmacologia , DNA Bacteriano/química , Desoxirribonuclease HindIII , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Klebsiella/crescimento & desenvolvimento , Plasmídeos , Mapeamento por Restrição , Transformação Bacteriana
3.
Appl Environ Microbiol ; 57(11): 3301-9, 1991 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16348590

RESUMO

Two new nickel-resistant strains of Alcaligenes species were selected from a large number (about 400) of strains isolated from ecosystems polluted by heavy metals and were studied on the physiological and molecular level. Alcaligenes xylosoxydans 31A is a heterotrophic bacterium, and Alcaligenes eutrophus KTO2 is an autotrophic aerobic hydrogen-oxidizing bacterium. Both strains carry-among other plasmids-a megaplasmid determining resistance to 20 to 50 mM NiCl(2) and 20 mM CoCl(2) (when growing in defined Tris-buffered media). Megaplasmids pTOM8, pTOM9 from strain 31A, and pGOE2 from strain KTO2 confer nickel resistance to the same degree to transconjugants of all strains of A. eutrophus tested but were not transferred to Escherichia coli. However, DNA fragments carrying the nickel resistance genes, cloned into broad-hostrange vector pVDZ'2, confer resistance to A. eutrophus derivatives as well as E. coli. The DNA fragments of both bacteria, TBA8, TBA9, and GBA (14.5-kb BamHI fragments), appear to be identical. They share equal size, restriction maps, and strong DNA homology but are largely different from fragment HKI of nickel-cobalt resistance plasmid pMOL28 of A. eutrophus CH34.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA