Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 162: 673-682, 2018 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-30025591

RESUMO

Petroleum can pollute pristine shorelines as a consequence of accidental spills or chronic leaks. In this study, the fate of petroleum hydrocarbons in soft pristine sediment of Caleta Valdés (Argentina) subject to ex situ simulated oil pollution was assessed. Sedimentary columns were exposed to medium and high concentrations of Escalante Crude Oil (ECO) and incubated in the laboratory during 30 days. Levels of aliphatic hydrocarbons at different depths of the sedimentary column were determined by gas chromatography. Oil penetration was limited to the first three centimetres in both treatments, and under this depth, hydrocarbons were clearly biogenic (terrestrial plants) as in the whole sedimentary column of the control assay. Bioturbation by macrobenthic infauna was strongly impacted by oil pollution which resulted in reduced sediment oxygenation and low burial of petroleum hydrocarbons. This may partly explain the limited hydrocarbon biodegradation observed, as indicated by the relatively high values of the ratios nC17/pristane, nC18/phytane, and total resolved aliphatic hydrocarbons/unresolved complex mixture. Correspondingly, at the end of the experiment the most probable number of hydrocarbon-degrading bacteria reached ~ 103 MPN g-1 dry weight. These values were lower than those found in chronically polluted coastal sediments, reflecting a low activity level of the oil-degrading community. The results highlight the low attenuation capacities of Caleta Valdés pristine sediments to recover its original characteristics in a short time period if an oil spill occurs. In this work, we present a novel and integrative tool to evaluate the fate of petroleum hydrocarbons and their potential damage on pristine sediments.


Assuntos
Bioensaio , Sedimentos Geológicos/química , Hidrocarbonetos/química , Petróleo/análise , Terpenos/química , Argentina , Bactérias/metabolismo , Biodegradação Ambiental , Cromatografia Gasosa , Poluição por Petróleo , Microbiologia do Solo , Poluentes do Solo/análise
2.
Environ Technol ; 32(5-6): 551-60, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21877536

RESUMO

Conservative particulate fluorescent tracers (e.g. luminophores and microspheres) are commonly used in a wide range of sediment transport studies. Traditionally, their spatial redistribution is estimated by counting them in sediments under ultraviolet light (e.g. by epifluorescence microscopy), a time-consuming but effective method. While alternative methods have recently been developed (e.g. photodetection, digital image analyses), this 'classical' counting method remains the most commonly used. This article describes an alternative procedure for measuring the concentration of fluorescent tracers (here, microspheres) using a microplate fluorimeter. This technique enables simultaneous analysis of numerous samples while reducing the sediment preparation and quantification time. After a calibration step from sediment samples with known microsphere content, the method was validated by comparing results from the epifluorescence microscopy method. Different adjustments were also reported, as well as application examples. The different calibration tests showed high linear relationships between the microsphere concentration of sediment samples and the measured fluorimetric intensities (R2-0.99) with a detection limit of 6%. In comparison with the previously used method, very similar results were obtained, as illustrated in recent studies using both luminophores and microspheres. The rapid and reliable method proposed here will enable increasingly complex experiments to be performed with less time-consuming qualitative analyses.


Assuntos
Fluorometria/métodos , Sedimentos Geológicos/química , Microesferas
3.
Chemosphere ; 76(3): 324-34, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19403158

RESUMO

Freshwater sediments represent a compartment for accumulation of toxic substances, notably of metallic pollutants such as uranium. However, they also constitute a privileged habitat for many benthic macro-invertebrate species with important roles in the functioning of these ecosystems, particularly through their bioturbation activities. Uranium accumulation in sediments can thus have harmful effects on these organisms (e.g., developmental delay, malformations, mortality). The present study aimed to evaluate the consequences of these effects on the bioturbation activity of Chironomus riparius larvae and Tubifex tubifex worms. These two species, which are widespread in freshwater ecosystems, are characteristic of two different modes of bioturbation: bioirrigation and upward bioconveying, respectively. By quantifying the burial and redistribution of fluorescent particulate tracers (microspheres), sediment reworking induced by these macro-invertebrates was measured after 12d of exposure. Biodiffusion D(b) and bioadvection W rates, as well as several other parameters, were estimated to assess and compare the bioturbation activity of the two species, separately and in combination, between uncontaminated and uranium-spiked sediments. The results reveal that C. riparius larvae were more sensitive to uranium, but their bioturbation activity, even under uncontaminated conditions, had little effect on sediment reworking. Particle mixing was mainly induced by T. tubifex worms, which were only affected by uranium at high concentrations in the sediment. Finally, bioturbation by T. tubifex led to a high degree of uranium release from sediment to the overlying water, which highlights the crucial role of this mostly dominant species on uranium biogeochemical cycles at concentrations existing in naturally contaminated sites.


Assuntos
Anelídeos/efeitos dos fármacos , Chironomidae/efeitos dos fármacos , Sedimentos Geológicos/química , Urânio/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Anelídeos/fisiologia , Chironomidae/fisiologia , Ecossistema , Larva/efeitos dos fármacos , Fatores de Tempo , Urânio/análise , Poluentes Químicos da Água/análise
4.
Environ Pollut ; 157(4): 1234-42, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19121883

RESUMO

The diffusive oxygen uptake (DOU) of sediments inhabited by Chironomus riparius and Tubifex tubifex was investigated using a planar oxygen optode device, and complemented by measurements of bioturbation activity. Additional experiments were performed within contaminated sediments to assess the impact of uranium on these processes. After 72h, the two invertebrate species significantly increased the DOU of sediments (13-14%), and no temporal variation occurred afterwards. Within contaminated sediments, it was already 24% higher before the introduction of the organisms, suggesting that uranium modified the sediment biogeochemistry. Although the two species firstly reacted by avoidance of contaminated sediment, they finally colonized it. Their bioturbation activity was reduced but, for T. tubifex, it remained sufficient to induce a release of uranium to the water column and an increase of the DOU (53%). These results highlight the necessity of further investigations to take into account the interactions between bioturbation, microbial metabolism and pollutants.


Assuntos
Chironomidae/fisiologia , Sedimentos Geológicos/química , Oligoquetos/fisiologia , Oxigênio/análise , Urânio/análise , Poluentes Radioativos da Água/análise , Animais , Ecologia/métodos , Água Doce , Urânio/toxicidade , Poluentes Radioativos da Água/toxicidade
5.
Chemosphere ; 48(9): 947-54, 2002 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12222790

RESUMO

A field study was conducted in a French Mediterranean littoral (Gulf of Fos) in order to determine the role of bioturbation processes during the bioremediation of oil-contaminated sediments. Inert particulate tracers (luminophores) and Arabian light crude oil were deposited at the surface of sediment cores incubated in situ for 2, 6 and 12 months. After incubation, luminophores and hydrocarbons presented roughly similar depth distributions in the sediment, showing a continuous burial of material until 55 mm depth. Short-chain (< or = n-C25) n-alkanes were totally removed from the sedimentary column after 6 months, whereas approximately 20% of heavier n-alkanes (e.g. n-C30) and of isoprenoid hydrocarbons (pristane (Pr) and phytane (Ph)) remained at the end of the experiment. The determination of the degradation constant and the turn-over rate of individual hydrocarbon indicated that C17-25 n-alkanes were degraded two to three times faster than longer homologues and than pristane and phytane. Using the 17alpha,21beta-C30-hopane as an internal inert reference, we could demonstrate that, after 12 months of in situ incubation, 55% of the losses of the n-alkanes < or = C25 and 35% of the losses of the heavier n-alkanes and of Pr and Ph were due to biodegradation processes. These results demonstrate that the activity of benthic organisms can have a significant influence on the qualitative and quantitative fate of acyclic hydrocarbons following a petroleum contamination in marine coastal sediments.


Assuntos
Sedimentos Geológicos/química , Hidrocarbonetos/química , Petróleo , Animais , Monitoramento Ambiental , Invertebrados , Cinética , Mar Mediterrâneo
6.
J Exp Mar Biol Ecol ; 256(2): 199-213, 2001 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-11164863

RESUMO

In the laboratory, marine worms were fed with a mixture of algae and several aliphatic hydrocarbons for 15 days. After ingestion by the worms, 34.9% of hydrocarbons are found in the faeces and only 3.1% accumulated in the gut. The comparison between the initial mixture and the faeces shows that the worm's digestive process lead to changes in the distribution of the n-alkane mixture. These changes are different from those only due to physical processes in the experimental conditions. In our experiment, no variation in the distribution of hydrocarbons in faeces with time and no microbial hydrocarbon biodegradation were evidenced. Our results suggest that marine worm feeding can substantially affect the fate of hydrocarbons in the sedimentary marine ecosystem by predominantly stimulating dissolution processes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...