Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Development ; 140(14): 3040-50, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23821038

RESUMO

Rhabdomyosarcoma is a pediatric malignancy thought to arise from the uncontrolled proliferation of myogenic cells. Here, we have generated models of rhabdomyosarcoma in the zebrafish by inducing oncogenic KRAS(G12D) expression at different stages during muscle development. Several zebrafish promoters were used, including the cdh15 and rag2 promoters, which drive gene expression in early muscle progenitors, and the mylz2 promoter, which is expressed in differentiating myoblasts. The tumors that developed differed in their ability to recapitulate normal myogenesis. cdh15:KRAS(G12D) and rag2:KRAS(G12D) fish developed tumors that displayed an inability to complete muscle differentiation as determined by histological appearance and gene expression analyses. By contrast, mylz2:KRAS(G12D) tumors more closely resembled mature skeletal muscle and were most similar to well-differentiated human rhabdomyosarcoma in terms of gene expression. mylz2:KRAS(G12D) fish showed significantly improved survival compared with cdh15:KRAS(G12D) and rag2:KRAS(G12D) fish. Tumor-propagating activity was enriched in myf5-expressing cell populations within all of the tumor types. Our results demonstrate that oncogenic KRAS(G12D) expression at different stages during muscle development has profound effects on the ability of tumor cells to recapitulate normal myogenesis, altering the tumorigenic capability of these cells.


Assuntos
Modelos Animais de Doenças , Desenvolvimento Muscular , Rabdomiossarcoma/genética , Animais , Animais Geneticamente Modificados , Caderinas/genética , Miosinas Cardíacas/genética , Proteínas de Ligação a DNA/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Cadeias Leves de Miosina/genética , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas p21(ras) , Células-Tronco/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas ras/genética
3.
PLoS One ; 8(5): e64969, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23705022

RESUMO

Epigenetics, or the reversible and heritable marks of gene regulation not including DNA sequence, encompasses chromatin modifications on both the DNA and histones and is as important as the DNA sequence itself. Chromatin-modifying factors are playing an increasingly important role in tumorigenesis, particularly among pediatric rhabdomyosarcomas (RMS), revealing potential novel therapeutic targets. We performed an overexpression screen of chromatin-modifying factors in a KRAS(G12D)-driven zebrafish model for RMS. Here, we describe the identification of a histone H3 lysine 9 histone methyltransferase, SUV39H1, as a suppressor of embryonal RMS formation in zebrafish. This suppression is specific to the histone methyltransferase activity of SUV39H1, as point mutations in the SET domain lacked the effect. SUV39H1-overexpressing and control tumors have a similar proliferation rate, muscle differentiation state, and tumor growth rate. Strikingly, SUV39H1-overexpressing fish initiate fewer tumors, which results in the observed suppressive phenotype. We demonstrate that the delayed tumor onset occurs between 5 and 7 days post fertilization. Gene expression profiling at these stages revealed that in the context of KRAS(G12D) overexpression, SUV39H1 may suppress cell cycle progression. Our studies provide evidence for the role of SUV39H1 as a tumor suppressor.


Assuntos
Carcinogênese/patologia , Genes Supressores , Metiltransferases/metabolismo , Rabdomiossarcoma Embrionário/enzimologia , Rabdomiossarcoma Embrionário/patologia , Proteínas de Peixe-Zebra/metabolismo , Animais , Carcinogênese/genética , Ciclo Celular/genética , Diferenciação Celular/genética , Proliferação de Células , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Metiltransferases/química , Metiltransferases/genética , Músculos/enzimologia , Músculos/patologia , Estrutura Terciária de Proteína , Rabdomiossarcoma Embrionário/genética , Peixe-Zebra , Proteínas de Peixe-Zebra/química , Proteínas de Peixe-Zebra/genética
4.
Development ; 140(11): 2354-64, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23615277

RESUMO

The zebrafish is a powerful genetic model that has only recently been used to dissect developmental pathways involved in oncogenesis. We hypothesized that operative pathways during embryogenesis would also be used for oncogenesis. In an effort to define RAS target genes during embryogenesis, gene expression was evaluated in Tg(hsp70-HRAS(G12V)) zebrafish embryos subjected to heat shock. dusp6 was activated by RAS, and this was used as the basis for a chemical genetic screen to identify small molecules that interfere with RAS signaling during embryogenesis. A KRAS(G12D)-induced zebrafish embryonal rhabdomyosarcoma was then used to assess the therapeutic effects of the small molecules. Two of these inhibitors, PD98059 and TPCK, had anti-tumor activity as single agents in both zebrafish embryonal rhabdomyosarcoma and a human cell line of rhabdomyosarcoma that harbored activated mutations in NRAS. PD98059 inhibited MEK1 whereas TPCK suppressed S6K1 activity; however, the combined treatment completely suppressed eIF4B phosphorylation and decreased translation initiation. Our work demonstrates that the activated pathways in RAS induction during embryogenesis are also important in oncogenesis and that inhibition of these pathways suppresses tumor growth.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Regulação Neoplásica da Expressão Gênica , Rabdomiossarcoma/patologia , Transdução de Sinais , Peixe-Zebra/embriologia , Proteínas ras/metabolismo , Animais , Animais Geneticamente Modificados , Linhagem Celular Tumoral , Fatores de Iniciação em Eucariotos/metabolismo , Flavonoides/farmacologia , Humanos , MAP Quinase Quinase 1/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Biossíntese de Proteínas , Rabdomiossarcoma/genética , Rabdomiossarcoma/metabolismo , Proteínas Quinases S6 Ribossômicas/metabolismo , Tosilfenilalanil Clorometil Cetona/farmacologia , Transgenes , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
5.
Cold Spring Harb Perspect Biol ; 2(8): a001123, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20679337

RESUMO

Zebrafish models have significantly contributed to our understanding of vertebrate development and, more recently, human disease. The growing number of genetic tools available in zebrafish research has resulted in the identification of many genes involved in developmental and disease processes. In particular, studies in the zebrafish have clarified roles of the p53 tumor suppressor in the formation of specific tumor types, as well as roles of p53 family members during embryonic development. The zebrafish has also been instrumental in identifying novel mechanisms of p53 regulation and highlighting the importance of these mechanisms in vivo. This article will summarize how zebrafish models have been used to reveal numerous, important aspects of p53 function.


Assuntos
Regulação Neoplásica da Expressão Gênica , Regulação da Expressão Gênica , Genes p53 , Proteína Supressora de Tumor p53/metabolismo , Animais , Apoptose , Ciclo Celular , Proteínas de Ligação a DNA/metabolismo , Humanos , Modelos Animais , Modelos Genéticos , Biologia Molecular/métodos , Proteínas Nucleares/metabolismo , Fosfoproteínas , Proteínas Ribossômicas/metabolismo , Transativadores , Proteína Tumoral p73 , Proteínas Supressoras de Tumor/metabolismo , Peixe-Zebra , Proteínas de Peixe-Zebra
6.
Blood ; 115(16): 3296-303, 2010 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-20056790

RESUMO

Self-renewal is a feature of cancer and can be assessed by cell transplantation into immune-compromised or immune-matched animals. However, studies in zebrafish have been severely limited by lack of these reagents. Here, Myc-induced T-cell acute lymphoblastic leukemias (T-ALLs) have been made in syngeneic, clonal zebrafish and can be transplanted into sibling animals without the need for immune suppression. These studies show that self-renewing cells are abundant in T-ALL and comprise 0.1% to 15.9% of the T-ALL mass. Large-scale single-cell transplantation experiments established that T-ALLs can be initiated from a single cell and that leukemias exhibit wide differences in tumor-initiating potential. T-ALLs also can be introduced into clonal-outcrossed animals, and T-ALLs arising in mixed genetic backgrounds can be transplanted into clonal recipients without the need for major histocompatibility complex matching. Finally, high-throughput imaging methods are described that allow large numbers of fluorescent transgenic animals to be imaged simultaneously, facilitating the rapid screening of engrafted animals. Our experiments highlight the large numbers of zebrafish that can be experimentally assessed by cell transplantation and establish new high-throughput methods to functionally interrogate gene pathways involved in cancer self-renewal.


Assuntos
Modelos Animais de Doenças , Transplante de Neoplasias/métodos , Células-Tronco Neoplásicas/patologia , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patologia , Peixe-Zebra/genética , Animais , Animais Geneticamente Modificados , Separação Celular , Citometria de Fluxo , Processamento de Imagem Assistida por Computador , Microscopia de Fluorescência , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética
7.
Genes Dev ; 21(11): 1382-95, 2007 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-17510286

RESUMO

Embryonal rhabdomyosarcoma (ERMS) is a devastating cancer with specific features of muscle differentiation that can result from mutational activation of RAS family members. However, to date, RAS pathway activation has not been reported in a majority of ERMS patients. Here, we have created a zebrafish model of RAS-induced ERMS, in which animals develop externally visible tumors by 10 d of life. Microarray analysis and cross-species comparisons identified two conserved gene signatures found in both zebrafish and human ERMS, one associated with tumor-specific and tissue-restricted gene expression in rhabdomyosarcoma and a second comprising a novel RAS-induced gene signature. Remarkably, our analysis uncovered that RAS pathway activation is exceedingly common in human RMS. We also created a new transgenic coinjection methodology to fluorescently label distinct subpopulations of tumor cells based on muscle differentiation status. In conjunction with fluorescent activated cell sorting, cell transplantation, and limiting dilution analysis, we were able to identify the cancer stem cell in zebrafish ERMS. When coupled with gene expression studies of this cell population, we propose that the zebrafish RMS cancer stem cell shares similar self-renewal programs as those found in activated satellite cells.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Genes ras/fisiologia , Rabdomiossarcoma Embrionário/genética , Peixe-Zebra/genética , Adenosina Desaminase/genética , Animais , Animais Geneticamente Modificados , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Diferenciação Celular , Transformação Celular Neoplásica , Células Cultivadas , Proteínas de Ligação a DNA/genética , Embrião não Mamífero/citologia , Embrião não Mamífero/metabolismo , Perfilação da Expressão Gênica , Humanos , Hibridização In Situ , Rim/citologia , Rim/metabolismo , Rim/patologia , Microinjeções , Músculo Esquelético/citologia , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas de Ligação a RNA , Rabdomiossarcoma Embrionário/etiologia , Rabdomiossarcoma Embrionário/patologia , Peixe-Zebra/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...