Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Sci Nutr ; 5(2): 223-232, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28265357

RESUMO

The black walnut, Junglas nigra, is indigenous to eastern North America, and abscission of its fruit occurs around October. The fruit consists of a husk, a hard shell, and kernel. The husk is commonly discarded in processing, though it contains phenolic compounds that exhibit antioxidant and antimicrobial properties. For this study, black walnut husks were extracted using supercritical carbon dioxide with an ethanol modifier. The effects of temperature, ethanol concentration, and drying of walnut husks prior to extraction upon antioxidant potential were evaluated using a factorial design of experiments. The solvent density was held constant at 0.75 g/mL. The optimal extraction conditions were found to be 68°C and 20 wt-% ethanol in supercritical carbon dioxide. At these conditions, the antioxidant potential as measured by the ferric reducing ability of plasma (FRAP) assay was 0.027 mmol trolox equivalent/g (mmol TE/g) for dried walnut husk and 0.054 mmol TE/g for walnut husks that were not dried. Antioxidant potential was also evaluated using the total phenolic content (TPC) and 1,1-diphenyl-2-picryl-hydrazyl (DPPH) assays and the FRAP assay was found to linearly correlate to the TPC assay.

2.
PLoS One ; 10(9): e0137103, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26332122

RESUMO

The androgen receptor (AR) surface-directed antagonist MJC13 inhibits AR function and proliferation of prostate cancer (PC) cells. These effects are related to arrest of an AR/chaperone complex in the cytoplasm. Here, we compared MJC13 and classic AR antagonists such as flutamide and bicalutamide. Microarray analysis and confirmatory qRT-PCR reveals that MJC13 and flutamide inhibit dihydrotestosterone (DHT)-dependent genes in LNCaP PC cells. Both compounds are equally effective on a genome wide basis and as effective as second generation AR antagonists (MDV3100, ARN-509) at selected genes. MJC13 inhibits AR binding to the prostate specific antigen (PSA) promoter more strongly than flutamide, consistent with different mechanisms of action. Examination of efficacy of MJC13 in conditions that reflect aspects castrate resistant prostate cancer (CRPC) reveals that it inhibits flutamide activation of an AR mutant (ART877A) that emerges during flutamide withdrawal syndrome, but displays greatly restricted gene-specific activity in 22Rv1 cells that express a constitutively active truncated AR and is inactive against glucocorticoid receptor (GR), which can co-opt androgen-dependent signaling networks in CRPC. Importantly, MJC13 inhibits AR interactions with SRC2 and ß-catenin in the nucleus and, unlike flutamide, strongly inhibits amplification of AR activity obtained with transfected SRC2 and ß-catenin. MJC13 also inhibits DHT and ß-catenin-enhanced cell division in LNCaP cells. Thus, a surface-directed antagonist can block AR activity in some conditions in which a classic antagonist fails and may display utility in particular forms of CRPC.


Assuntos
Antagonistas de Androgênios/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Di-Hidrotestosterona/farmacologia , Flutamida/farmacologia , Genes Reporter , Células HEK293 , Humanos , Masculino , Neoplasias da Próstata/patologia , Receptores Androgênicos/genética , beta Catenina/metabolismo
3.
PLoS One ; 10(7): e0134015, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26207810

RESUMO

FKBP52 and ß-catenin have emerged in recent years as attractive targets for prostate cancer treatment. ß-catenin interacts directly with the androgen receptor (AR) and has been characterized as a co-activator of AR-mediated transcription. FKBP52 is a positive regulator of AR in cellular and whole animal models and is required for the development of androgen-dependent tissues. We previously characterized an AR inhibitor termed MJC13 that putatively targets the AR BF3 surface to specifically inhibit FKBP52-regulated AR signaling. Predictive modeling suggests that ß-catenin interacts with the AR hormone binding domain on a surface that overlaps with BF3. Here we demonstrate that FKBP52 and ß-catenin interact directly in vitro and act in concert to promote a synergistic up-regulation of both hormone-independent and -dependent AR signaling. Our data demonstrate that FKBP52 promotes ß-catenin interaction with AR and is required for ß-catenin co-activation of AR activity in prostate cancer cells. MJC13 effectively blocks ß-catenin interaction with the AR LBD and the synergistic up-regulation of AR by FKBP52 and ß-catenin. Our data suggest that co-regulation of AR by FKBP52 and ß-catenin does not require FKBP52 PPIase catalytic activity, nor FKBP52 binding to Hsp90. However, the FKBP52 proline-rich loop that overhangs the PPIase pocket is critical for synergy.


Assuntos
Receptores Androgênicos/metabolismo , Sistemas do Segundo Mensageiro , Proteínas de Ligação a Tacrolimo/metabolismo , beta Catenina/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Células HEK293 , Células HeLa , Humanos , Dados de Sequência Molecular , Ligação Proteica , Proteínas de Ligação a Tacrolimo/química , beta Catenina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...