Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemistry ; 26(64): 14715-14723, 2020 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-32677713

RESUMO

Terminal alkyne coupling reactions promoted by rhodium(I) complexes of macrocyclic NHC-based pincer ligands-which feature dodecamethylene, tetradecamethylene or hexadecamethylene wingtip linkers viz. [Rh(CNC-n)(C2 H4 )][BArF 4 ] (n=12, 14, 16; ArF =3,5-(CF3 )2 C6 H3 )-have been investigated, using the bulky alkynes HC≡CtBu and HC≡CAr' (Ar'=3,5-tBu2 C6 H3 ) as substrates. These stoichiometric reactions proceed with formation of rhodium(III) alkynyl alkenyl derivatives and produce rhodium(I) complexes of conjugated 1,3-enynes by C-C bond reductive elimination through the annulus of the ancillary ligand. The intermediates are formed with orthogonal regioselectivity, with E-alkenyl complexes derived from HC≡CtBu and gem-alkenyl complexes derived from HC≡CAr', and the reductive elimination step is appreciably affected by the ring size of the macrocycle. For the homocoupling of HC≡CtBu, E-tBuC≡CCH=CHtBu is produced via direct reductive elimination from the corresponding rhodium(III) alkynyl E-alkenyl derivatives with increasing efficacy as the ring is expanded. In contrast, direct reductive elimination of Ar'C≡CC(=CH2 )Ar' is encumbered relative to head-to-head coupling of HC≡CAr' and it is only with the largest macrocyclic ligand studied that the two processes are competitive. These results showcase how macrocyclic ligands can be used to interrogate the mechanism and tune the outcome of terminal alkyne coupling reactions, and are discussed with reference to catalytic reactions mediated by the acyclic homologue [Rh(CNC-Me)(C2 H4 )][BArF 4 ] and solvent effects.

2.
Chem Sci ; 11(8): 2051-2057, 2020 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-32180927

RESUMO

The preparation of a range of tetraaryl-substituted bicyclo[4.2.0]octa-1,5,7-trienes using a one-pot procedure starting from terminal aryl alkynes and catalysed by a rhodium(i) complex is reported. This synthesis proceeds by a reaction sequence involving head-to-tail homocoupling of the terminal alkyne and zipper annulation of the resulting gem-enyne. The rhodium catalyst employed is notable for the incorporation of a flexible NHC-based pincer ligand, which is suggested to interconvert between mer- and fac-coordination modes to fulfil the orthogonal mechanistic demands of the two transformations. Evidence for this interesting auto-tandem action of the catalyst is provided by reactions of the precatalyst with model substrates, corroborating proposed intermediates in both component cycles, and norbornadiene, which reversibly captures the change in pincer ligand coordination mode, along with a DFT-based computational analysis.

3.
Angew Chem Int Ed Engl ; 57(37): 12003-12006, 2018 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-30004163

RESUMO

The mechanism and selectivity of terminal alkyne coupling reactions promoted by rhodium(I) complexes of NHC-based CNC pincer ligands have been investigated. Synthetic and kinetic experiments support E- and gem-enyne formation through a common reaction sequence involving hydrometallation and rate-determining C-C bond reductive elimination. The latter is significantly affected by the ligand topology: Employment of a macrocyclic variant enforced exclusive head-to-head coupling, contrasting the high selectivity for head-to-tail coupling observed for the corresponding acyclic pincer ligand.

4.
Dalton Trans ; 45(21): 8937-44, 2016 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-27157720

RESUMO

With a view to use as carbene transfer agents, well-defined silver(i) and copper(i) complexes of a macrocyclic NHC-based pincer ligand, bearing a central lutidine donor and a dodecamethylene spacer [CNC-(CH2)12, 1], have been prepared. Although the silver adduct is characterised by X-ray diffraction as a dinuclear species anti-[Ag(µ-1)]2(2+), variable temperature measurements indicate dynamic structural interchange in solution involving fragmentation into mononuclear [Ag(1)](+) on the NMR time scale. In contrast, a mononuclear structure is evident in both solution and the solid-state for the analogous copper adduct partnered with the weakly coordinating [BAr(F)4](-) counter anion. A related copper derivative, bearing instead the more coordinating cuprous bromide dianion [Cu2Br4](2-), is notable for the adoption of an interesting tetranuclear assembly in the solid-state, featuring two cuprophilic interactions and two bridging NHC donors, but is not retained on dissolution. Coinage metal precursors [M(1)]n[BAr(F)4]n (M = Ag, n = 2; M = Cu, n = 1) both act as carbene transfer agents to afford palladium, rhodium and nickel complexes of 1 and the effectiveness of these precursors has been evaluated under equivalent reaction conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...