Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Exp Brain Res ; 241(2): 383-393, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36544016

RESUMO

Whole-body cryotherapy (WBC) has been reported to maximize physical recovery after exercise and reduce the ensuing muscle damage. In addition, WBC triggers cardiovascular responses leading to an increased vagal drive. Here we tested whether WBC may boost exercise performance as well as post-exercise recovery. Moreover, we compared the effects of WBC and exercise on sympathovagal balance and tested whether these two factors may interact. ECG was recorded in 28 healthy adults who underwent rest, all-out effort on a cycloergometer, 5 min recovery and again rest. After 3-5 days, WBC (3 min exposure to - 150 °C air) was applied and the whole procedure repeated. Total exercise duration was split into the time needed to reach peak power output (tPEAK) and the time to exhaustion (tEXH). The post-exercise exponential decay of HR was characterized by its delay from exercise cessation (tDELAY) and by its time constant (τOFF). Sympathovagal balance was evaluated by measuring HR variability power in the low (LF) and high (HF) frequency bands, both before exercise and after recovery from it. Sympathetic vs. vagal predominance was assessed by the sympathovagal index LFnu. Paired t-tests indicated that WBC increased tEXH and reduced tDELAY, speeding up the HR recovery. These results suggest that WBC may be exploited to boost exercise performance by about 12-14%. ANOVA on HR variability confirmed that exercise shifted the sympathovagal balance towards sympathetic predominance, but it also highlighted that WBC enhanced vagal drive at rest, both before exercise and after full recovery, covering ~ 70% of the exercise effect.


Assuntos
Crioterapia , Nervo Vago , Adulto , Humanos , Nervo Vago/fisiologia , Crioterapia/métodos , Exercício Físico/fisiologia , Teste de Esforço , Ciclismo , Frequência Cardíaca/fisiologia
2.
Biol Sport ; 39(1): 199-206, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35173378

RESUMO

To examine the effects of increased strength on mechanical work, the metabolic cost of transport (Cost), and mechanical efficiency (ME) during running. Fourteen physically active men (22.0 ± 2.0 years, 79.3 ± 11.1 kg) were randomized to a strength-training group (SG, n = 7), who participated in a maximal strength training protocol lasting 8 weeks, and a control group (CG, n = 7), which did not perform any training intervention. Metabolic and kinematic data were collected simultaneously while running at a constant speed (2.78 m·s-1). The ME was defined as the ratio between mechanical power (Pmec) and metabolic power (Pmet). The repeated measures two-way ANOVA did not show any significant interaction between groups, despite some large effect sizes (d): internal work (Wint, p = 0.265, d = -1.37), external work (Wext, p = 0.888, d = 0.21), total work (Wtot, p = 0.931, d = -0.17), Pmec (p = 0.917, d = -0.17), step length (SL, p = 0.941, d = 0.24), step frequency (SF, p = 0.814, d = -0.18), contact time (CT, p = 0.120, d = -0.79), aerial time (AT, p = 0.266, d = 1.12), Pmet (p = 0.088, d = 0.85), and ME (p = 0.329, d = 0.54). The exception was a significant decrease in Cost (p = 0.047, d = 0.84) in SG. The paired t-test and Wilcoxon test only detected intragroup differences (pre- vs. post-training) for SG, showing a higher CT (p = 0.041), and a lower Cost (p = 0.003) and Pmet (p = 0.004). The results indicate that improved neuromuscular factors related to strength training may be responsible for the higher metabolic economy of running after 8 weeks of intervention. However, this process was unable to alter running mechanics in order to indicate a significant improvement in ME.

3.
Front Physiol ; 12: 632883, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33833687

RESUMO

Cardiac autonomic control is commonly assessed via the analysis of fluctuations of the temporal distance between two consecutive R-waves (RR). Cardiac regulation assessment following high intensity physical exercise is difficult due to RR non-stationarities. The very short epoch following maximal sprint exercise when RR remains close to its lowest value, i.e., the PLATEAU, provides the opportunity to evaluate cardiac regulation from stationary RR sequences. The aim of the study is to evaluate cardiac autonomic control during PLATEAU phase following 60-m maximal sprint and compare the results to those derived from sequences featuring the same length as the PLATEAU and derived from pre-exercise and post-exercise periods. These sequences were referred to as PRE and POST sequences. RR series were recorded in 21 subjects (age: 24.9 ± 5.1 years, 15 men and six women). We applied a symbolic approach due to its ability to deal with very short RR sequences. The symbolic approach classified patterns formed by three RRs according to the sign and number of RR variations. Symbolic markers were compared to more classical time and frequency domain indexes. Comparison was extended to simulated signals to explicitly evaluate the suitability of methods to deal with short variability series. A surrogate test was applied to check the null hypothesis of random fluctuations. Over simulated data symbolic analysis was able to separate dynamics with different spectral profiles provided that the frame length was longer than 10 cardiac beats. Over real data the surrogate test indicated the presence of determinism in PRE, PLATEAU, and POST sequences. We found that the rate of patterns with two variations with unlike sign increased during PLATEAU and in POST sequences and the frequency of patterns with no variations remained unchanged during PLATEAU and decreased in POST compared to PRE sequences. Results indicated a sustained sympathetic control along with an early vagal reactivation during PLATEAU and a shift of the sympathovagal balance toward vagal predominance in POST compared to PRE sequences. Time and frequency domains markers were less powerful because they were dominated by the dramatic decrease of RR variance during PLATEAU.

4.
Front Psychol ; 10: 2950, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32038363

RESUMO

When a maximal sprint starts, heart rate (HR) quickly increases. After the exercise ends, HR keeps high for seconds before recovering with a roughly exponential decay. Such decay and its time constant (τoff) have been widely studied, but less attention was devoted to the time delay (tdelay) between sprint end and HR decay onset. Considering the correlation between sympatho-vagal balance and performance, as well as the occurrence of heart failure in cardiopaths during the post-exercise phase, we evaluated sympatho-vagal balance before and after sprint, trying to correlate it with both tdelay and τoff. R-R intervals, recorded in 24 healthy adults from 5 min before to 5 min after a 60-m sprint-test (from Storniolo et al., 2017, with permission of all authors), were re-processed to extract HR variability power (LF and HF) in the low- and high-frequency ranges, respectively. The sympatho-vagal balance, evaluated in pre-test resting period (LF/HF)REST and at steady-state recovery (LF/HF)RECOV, was correlated with tdelay and τoff. Both (LF/HF)REST and (LF/HF)RECOV had a skewed distribution. Significant rank correlation was found for (LF/HF)REST vs. τoff and for (LF/HF)RECOV vs. both τoff and tdelay. The difference (LF/HF)RECOV-REST had a normal distribution and a strong partial correlation with tdelay but not with τoff. Thus, a long tdelay marks a sympathetic activity that keeps high after exercise, while a high sympathetic activity before sprint leads to a slow recovery (high τoff), seemingly accompanying a poor performance.

6.
PLoS One ; 13(3): e0194057, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29561907

RESUMO

PURPOSE: Strength training improves distance running economy and performance. This finding is based predominantly on maximal and explosive strength programmes applied to locomotor muscles, particularly on the lower limbs. It is not certain whether a minimization of metabolic cost (Cmet) and an improvement in running performance is feasible with strength training of the postural and trunk muscles. METHODS: Using kinematic, neuromuscular and metabolic measurements of running at two different speeds before and after a 12-week Pilates training programme, we tested the hypothesis that core training might improve the running Cmet and performance of trained runners. Thirty-two individuals were randomly assigned to the control group (CG, n = 16) or the Pilates group (PG, n = 16). RESULTS: Confirming our hypothesis, a significant improvement (p<0.05) was observed for running performance in the PG (pre: 25.65±0.4 min; post: 23.23±0.4 min) compared to the CG (pre: 25.33±0.58 min; post: 24.61±0.52 min). Similarly, the PG (4.33±0.07 J.kg-1.m-1) had better responses than the CG (4.71±0.11 J.kg-1.m-1) during post-training for Cmet. These findings were accompanied by decreased electromyographic activity of the postural muscles at submaximal running intensities in the PG. CONCLUSIONS: Overall, these results provide a rationale for selecting strength training strategies that target adaptations on specific postural and locomotor muscles for trained distance runners.


Assuntos
Músculo Esquelético/fisiologia , Resistência Física/fisiologia , Corrida/fisiologia , Adaptação Fisiológica/fisiologia , Adolescente , Técnicas de Exercício e de Movimento/métodos , Humanos , Força Muscular/fisiologia , Consumo de Oxigênio/fisiologia , Treinamento Resistido/métodos
7.
Front Physiol ; 8: 868, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29163210

RESUMO

Maximum aerobic power ([Formula: see text]) as an indicator of body fitness is today a very well-known concept not just for athletes but also for the layman. Unfortunately, the accurate measurement of that variable has remained a complex and exhaustive laboratory procedure, which makes it inaccessible to many active people. In this paper we propose a quick estimate of it, mainly based on the heart rate off-kinetics immediately after an all-out 60-m sprint run. The design of this test took into account the recent availability of wrist wearable, heart band free, multi-sensor smart devices, which could also inertially detect the different phases of the sprint and check the distance run. 25 subjects undertook the 60-m test outdoor and a [Formula: see text] test on the laboratory treadmill. Running average speed, HR excursion during the sprint and the time constant (τ) of HR exponential decay in the off-kinetics were fed into a multiple regression, with measured [Formula: see text] as the dependent variable. Statistics revealed that within the investigated range (25-55 ml O2/(kg min)), despite a tendency to overestimate low values and underestimate high values, the three predictors confidently estimate individual [Formula: see text] (R2 = 0.65, p < 0.001). The same analysis has been performed on a 5-s averaged time course of the same measured HR off-kinetics, as these are the most time resolved data for HR provided by many modern smart watches. Results indicate that despite of the substantial reduction in sample size, predicted [Formula: see text] still explain 59% of the variability of the measured [Formula: see text].

8.
J Appl Biomech ; 33(1): 69-75, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27705058

RESUMO

We compared running mechanics parameters determined from ground reaction force (GRF) measurements with estimated forces obtained from double differentiation of kinematic (K) data from motion analysis in a broad spectrum of running speeds (1.94-5.56 m⋅s-1). Data were collected through a force-instrumented treadmill and compared at different sampling frequencies (900 and 300 Hz for GRF, 300 and 100 Hz for K). Vertical force peak, shape, and impulse were similar between K methods and GRF. Contact time, flight time, and vertical stiffness (kvert) obtained from K showed the same trend as GRF with differences < 5%, whereas leg stiffness (kleg) was not correctly computed by kinematics. The results revealed that the main vertical GRF parameters can be computed by the double differentiation of the body center of mass properly calculated by motion analysis. The present model provides an alternative accessible method for determining temporal and kinetic parameters of running without an instrumented treadmill.


Assuntos
Teste de Esforço/instrumentação , Pé/fisiologia , Perna (Membro)/fisiologia , Modelos Biológicos , Esforço Físico/fisiologia , Corrida/fisiologia , Simulação por Computador , Módulo de Elasticidade/fisiologia , Humanos , Pressão , Estresse Mecânico
9.
Rev. bras. med. esporte ; 22(5): 336-339, set.-out. 2016. tab, graf
Artigo em Português | LILACS | ID: lil-798052

RESUMO

RESUMO Introdução: A velocidade de progressão é, em geral, determinada em pesquisas na área da locomoção. Objetivo: Comparar as medidas de velocidade autosselecionada no solo, na esteira rolante e a velocidade ideal estimada pelo número de Froude em sujeitos amputados transfemorais. Método: Primeiramente foi determinada a velocidade no solo; em seguida, realizou-se o teste na esteira, e a velocidade ideal foi estimada a partir dos dados antropométricos. Todos os sujeitos utilizavam joelho hidráulico e pé em fibra de carbono. Para comparação entre as velocidades foi realizada ANOVA de duas vias. Resultados: A velocidade autosselecionada na esteira foi menor (22%) do que no solo. Tanto a velocidade autosselecionada na esteira como a do solo foram 44% e 22% menores do que a velocidade ideal estimada, respectivamente. Conclusão: As velocidades analisadas no presente estudo foram diferentes, provavelmente, devido à variação dos parâmetros cinemáticos.


ABSTRACT Introduction: The speed of progression is generally determined in researches in the field of locomotion. Objective: To compare the self-selected velocity measurements on the ground, on treadmill and the optimal speed estimated by the Froude number in subjects with transfemoral amputation. Methods: First, the ground speed was determined; then the treadmill test was performed, and the optimal speed was estimated from anthropometric data. All subjects had hydraulic knee and carbon fiber foot. To compare the speeds, we used the two-way ANOVA. Results: The self-selected speed in the treadmill was lower (22%) compared with the ground. Both the self-selected speed in treadmill as ground were 44% and 22% lower than the estimated optimum speed, respectively. Conclusion: The speeds analyzed in this study were different, probably due to the variation of the kinematic parameters.


RESUMEN Introducción: La velocidad de progresión es generalmente determinada en investigaciones en el ámbito de la locomoción. Objetivo: Comparar las mediciones de la velocidad autoseleccionada en el suelo, en la cinta caminadora y la velocidad ideal estimada por el número de Froude en sujetos con amputación transfemoral. Métodos: En primer lugar, se determinó la velocidad en el suelo; después, se realizó la prueba en la cinta caminadora, y la velocidad ideal fue estimada a partir de los datos antropométricos. Todos los sujetos tenían rodilla hidráulica y pie en fibra de carbono. Para comparar las velocidades, se utilizó el ANOVA de dos vías. Resultados: La velocidad autoseleccionada en la cinta caminadora fue menor (22%) que en el suelo. Tanto la velocidad autoseleccionada en la cinta caminadora como la del suelo fueron 44% y 22% menores a la velocidad ideal estimada, respectivamente. Conclusión: Las velocidades analizadas en el presente estudio fueron diferentes, probablemente debido a la variación de los parámetros cinemáticos.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...