Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 15(13)2023 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-37444452

RESUMO

Glioblastoma (GBM) is a malignant brain cancer refractory to the current standard of care, prompting an extensive search for novel strategies to improve outcomes. One approach under investigation is oncolytic virus (OV) therapy in combination with radiotherapy. In addition to the direct cytocidal effects of radiotherapy, radiation induces cellular senescence in GBM cells. Senescent cells cease proliferation but remain viable and are implicated in promoting tumor progression. The interaction of viruses with senescent cells is nuanced; some viruses exploit the senescent state to their benefit, while others are hampered, indicating senescence-associated antiviral activity. It is unknown how radiation-induced cellular senescence may impact the oncolytic properties of OVs based on the vaccinia virus (VACV) that are used in combination with radiotherapy. To better understand this, we induced cellular senescence by treating GBM cells with radiation, and then evaluated the growth kinetics, infectivity, and cytotoxicity of an oncolytic VACV, ∆F4LΔJ2R, as well as wild-type VACV in irradiated senescence-enriched and non-irradiated human GBM cell lines. Our results show that both viruses display attenuated oncolytic activities in irradiated senescence-enriched GBM cell populations compared to non-irradiated controls. These findings indicate that radiation-induced cellular senescence is associated with antiviral activity and highlight important considerations for the combination of VACV-based oncolytic therapies with senescence-inducing agents such as radiotherapy.

2.
Cancer Lett ; 562: 216169, 2023 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-37061120

RESUMO

Glioblastoma (GB) is a malignant and immune-suppressed brain cancer that remains incurable despite the current standard of care. Radiotherapy is a mainstay of GB treatment, however invasive cancer cells outside the irradiated field and radioresistance preclude complete eradication of GB cells. Oncolytic virus therapy harnesses tumor-selective viruses to spread through and destroy tumors while stimulating antitumor immune responses, and thus has potential for use following radiotherapy. We demonstrate that oncolytic ΔF4LΔJ2R vaccinia virus (VACV) replicates in and induces cytotoxicity of irradiated brain tumor initiating cells in vitro. Importantly, a single 10 Gy dose of radiation combined with ΔF4LΔJ2R VACV produced considerably superior anticancer effects relative to either monotherapy when treating immune-competent orthotopic CT2A-luc mouse models-significantly extending survival and curing the majority of mice. Mice cured by the combination displayed significantly increased survival relative to naïve age-matched controls following intracranial tumor challenge, with some complete rejections. Further, the combination therapy was associated with an increased ratio of CD8+ effector T cells to regulatory T cells compared to either monotherapy. This study validates the use of radiation with an oncolytic ΔF4LΔJ2R VACV to improve treatment of this malignant brain cancer.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Terapia Viral Oncolítica , Vírus Oncolíticos , Camundongos , Animais , Vírus Oncolíticos/fisiologia , Vaccinia virus/genética , Glioblastoma/terapia , Neoplasias Encefálicas/terapia , Ensaios Antitumorais Modelo de Xenoenxerto , Linhagem Celular Tumoral
3.
Int J Mol Sci ; 21(22)2020 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-33238631

RESUMO

Radiotherapy is a major modality used to combat a wide range of cancers. Classical radiobiology principles categorize ionizing radiation (IR) as a direct cytocidal therapeutic agent against cancer; however, there is an emerging appreciation for additional antitumor immune responses generated by this modality. A more nuanced understanding of the immunological pathways induced by radiation could inform optimal therapeutic combinations to harness radiation-induced antitumor immunity and improve treatment outcomes of cancers refractory to current radiotherapy regimens. Here, we summarize how radiation-induced DNA damage leads to the activation of a cytosolic DNA sensing pathway mediated by cyclic GMP-AMP (cGAMP) synthase (cGAS) and stimulator of interferon genes (STING). The activation of cGAS-STING initiates innate immune signaling that facilitates adaptive immune responses to destroy cancer. In this way, cGAS-STING signaling bridges the DNA damaging capacity of IR with the activation of CD8+ cytotoxic T cell-mediated destruction of cancer-highlighting a molecular pathway radiotherapy can exploit to induce antitumor immune responses. In the context of radiotherapy, we further report on factors that enhance or inhibit cGAS-STING signaling, deleterious effects associated with cGAS-STING activation, and promising therapeutic candidates being investigated in combination with IR to bolster immune activation through engaging STING-signaling. A clearer understanding of how IR activates cGAS-STING signaling will inform immune-based treatment strategies to maximize the antitumor efficacy of radiotherapy, improving therapeutic outcomes.


Assuntos
Anormalidades Induzidas por Radiação/genética , Imunidade/genética , Proteínas de Membrana/genética , Neoplasias/genética , Nucleotidiltransferases/genética , Anormalidades Induzidas por Radiação/imunologia , Anormalidades Induzidas por Radiação/patologia , Dano ao DNA/imunologia , Dano ao DNA/efeitos da radiação , Humanos , Imunidade/imunologia , Imunidade/efeitos da radiação , Imunidade Inata/efeitos da radiação , Proteínas de Membrana/imunologia , Neoplasias/imunologia , Neoplasias/patologia , Neoplasias/radioterapia , Nucleotidiltransferases/imunologia , Transdução de Sinais/efeitos da radiação
4.
BMC Cancer ; 18(1): 817, 2018 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-30103729

RESUMO

BACKGROUND: Breast cancer is the most common malignancy in women worldwide. Although the endocrine therapy that targets estrogen receptor α (ERα) signaling has been well established as an effective adjuvant treatment for patients with ERα-positive breast cancers, long-term exposure may eventually lead to the development of acquired resistance to the anti-estrogen drugs, such as fulvestrant and tamoxifen. A better understanding of the mechanisms underlying antiestrogen resistance and identification of the key molecules involved may help in overcoming antiestrogen resistance in breast cancer. METHODS: The whole-genome gene expression and DNA methylation profilings were performed using fulvestrant-resistant cell line 182R-6 and tamoxifen-resistant cell line TAMR-1 as a model system. In addition, qRT-PCR and Western blot analysis were performed to determine the levels of mRNA and protein molecules. MTT, apoptosis and cell cycle analyses were performed to examine the effect of either guanine nucleotide-binding protein beta-4 (GNB4) overexpression or knockdown on cell proliferation, apoptosis and cell cycle. RESULTS: Among 9 candidate genes, GNB4 was identified and validated by qRT-PCR as a potential target silenced by DNA methylation via DNA methyltransferase 3B (DNMT3B). We generated stable 182R-6 and TAMR-1 cell lines that are constantly expressing GNB4 and determined the effect of the ectopic GNB4 on cell proliferation, cell cycle, and apoptosis of the antiestrogen-resistant cells in response to either fulvestrant or tamoxifen. Ectopic expression of GNB4 in two antiestrogen resistant cell lines significantly promoted cell growth and shortened cell cycle in the presence of either fulvestrant or tamoxifen. The ectopic GNB4 induced apoptosis in 182R-6 cells, whereas it inhibited apoptosis in TAMR-1 cells. Many regulators controlling cell cycle and apoptosis were aberrantly expressed in two resistant cell lines in response to the enforced GNB4 expression, which may contribute to GNB4-mediated biologic and/or pathologic processes. Furthermore, knockdown of GNB4 decreased growth of both antiestrogen resistant and sensitive breast cancer cells. CONCLUSION: GNB4 is important for growth of breast cancer cells and a potential target for treatment.


Assuntos
Neoplasias da Mama/tratamento farmacológico , DNA (Citosina-5-)-Metiltransferases/genética , Subunidades beta da Proteína de Ligação ao GTP/genética , Tamoxifeno/administração & dosagem , Apoptose/efeitos dos fármacos , Biomarcadores Tumorais/genética , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Metilação de DNA/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Estradiol/administração & dosagem , Estradiol/efeitos adversos , Estradiol/análogos & derivados , Antagonistas de Estrogênios/administração & dosagem , Receptor alfa de Estrogênio/antagonistas & inibidores , Feminino , Fulvestranto , Técnicas de Silenciamento de Genes , Genoma Humano , Humanos , Células MCF-7 , Tamoxifeno/efeitos adversos , DNA Metiltransferase 3B
5.
Oncogenesis ; 7(7): 54, 2018 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-30057418

RESUMO

Antiestrogen resistance is a major challenge encountered during the treatment of estrogen receptor alpha positive (ERα+) breast cancer. A better understanding of signaling pathways and downstream transcription factors and their targets may identify key molecules that can overcome antiestrogen resistance in breast cancer. An aberrant expression of miR-22 has been demonstrated in breast cancer; however, its contribution to breast cancer resistance to fulvestrant, an antiestrogen drug, remains unknown. In this study, we demonstrated a moderate elevation in miR-22 expression in the 182R-6 fulvestrant-resistant breast cancer line we used as a model system, and this elevation was positively correlated with the expression of the miRNA biogenesis enzymes AGO2 and Dicer. The level of phosphorylated HER2/neu at Tyr877 was also upregulated in these cells, whereas the level of RelA/p65 phosphorylated at Ser536 (p-p65) was downregulated. Knockdown of HER2/neu led to an induction of p-p65 and a reduction in miR-22 levels. Luciferase assays identified two NF-κB binding motifs in the miR-22 promoter that contributed to transcriptional repression of miR-22. Activation of RelA/p65, triggered by LPS, attenuated miR-22 expression, but this expression was restored by sc-514, a selective IKKß inhibitor. Inhibition of miR-22 suppressed cell proliferation, induced apoptosis and caused cell cycle S-phase arrest, whereas enhancing expression of p21Cip1/Waf1 and p27Kip1. Surprisingly, ectopic expression of miR-22 also suppressed cell proliferation, induced apoptosis, caused S-phase arrest, and promoted the expression of p21Cip1/Waf1 and p27Kip1. Ectopic overexpression of miR-22 repressed the expression of FOXP1 and HDAC4, leading to a marked induction of acetylation of HDAC4 target histones. Conversely, inhibition of miR-22 promoted the expression of both FOXP1 and HDAC4, without the expected attenuation of histone acetylation. Instead, p53 acetylation at lysine 382 was unexpectedly upregulated. Taken together, our findings demonstrated, for the first time, that HER2 activation dephosphorylates RelA/p65 at Ser536. This dephosphoryalted p65 may be pivotal in transactivation of miR-22. Both increased and decreased miR-22 expression cause resensitization of fulvestrant-resistant breast cancer cells to fulvestrant. HER2/NF-κB (p65)/miR-22/HDAC4/p21 and HER2/NF-κB (p65)/miR-22/Ac-p53/p21 signaling circuits may therefore confer this dual role on miR-22 through constitutive transactivation of p21.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...