Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Leukoc Biol ; 115(2): 358-373, 2024 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-37793181

RESUMO

Exposure to pathogen-associated molecular patterns (PAMPs) induces an augmented, broad-spectrum antimicrobial response to subsequent infection, a phenomenon termed innate immune memory. This study examined the effects of treatment with ß-glucan, a fungus-derived dectin-1 ligand, or monophosphoryl lipid A (MPLA), a bacteria-derived Toll-like receptor 4 ligand, on innate immune memory with a focus on identifying common cellular and molecular pathways activated by these diverse PAMPs. Treatment with either PAMP prepared the innate immune system to respond more robustly to Pseudomonas aeruginosa infection in vivo by facilitating mobilization of innate leukocytes into blood, recruitment of leukocytes to the site of infection, augmentation of microbial clearance, and attenuation of cytokine production. Examination of macrophages ex vivo showed amplification of metabolism, phagocytosis, and respiratory burst after treatment with either agent, although MPLA more robustly augmented these activities and more effectively facilitated killing of bacteria. Both agents activated gene expression pathways in macrophages that control inflammation, antimicrobial functions, and protein synthesis and suppressed pathways regulating cell division. ß-glucan treatment minimally altered macrophage differential gene expression in response to lipopolysaccharide (LPS) challenge, whereas MPLA attenuated the magnitude of the LPS-induced transcriptional response, especially cytokine gene expression. These results show that ß-glucan and MPLA similarly augment the innate response to infection in vivo. Yet, MPLA more potently induces alterations in macrophage metabolism, antimicrobial functions, gene transcription and the response to LPS.


Assuntos
Anti-Infecciosos , beta-Glucanas , Lipopolissacarídeos/farmacologia , Moléculas com Motivos Associados a Patógenos , Imunidade Treinada , Ligantes , Citocinas , beta-Glucanas/farmacologia , Bactérias , Imunidade Inata
2.
Front Immunol ; 13: 1044662, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36439136

RESUMO

Immunocompromised populations are highly vulnerable to developing life-threatening infections. Strategies to protect patients with weak immune responses are urgently needed. Employing trained immunity, whereby innate leukocytes undergo reprogramming upon exposure to a microbial product and respond more robustly to subsequent infection, is a promising approach. Previously, we demonstrated that the TLR4 agonist monophosphoryl lipid A (MPLA) induces trained immunity and confers broad resistance to infection. TLR4 signals through both MyD88- and TRIF-dependent cascades, but the relative contribution of each pathway to induction of trained immunity is unknown. Here, we show that MPLA-induced resistance to Staphylococcus aureus infection is lost in MyD88-KO, but not TRIF-KO, mice. The MyD88-activating agonist CpG (TLR9 agonist), but not TRIF-activating Poly I:C (TLR3 agonist), protects against infection in a macrophage-dependent manner. MPLA- and CpG-induced augmentation of macrophage metabolism and antimicrobial functions is blunted in MyD88-, but not TRIF-KO, macrophages. Augmentation of antimicrobial functions occurs in parallel to metabolic reprogramming and is dependent, in part, on mTOR activation. Splenic macrophages from CpG-treated mice confirmed that TLR/MyD88-induced reprogramming occurs in vivo. TLR/MyD88-triggered metabolic and functional reprogramming was reproduced in human monocyte-derived macrophages. These data show that MyD88-dependent signaling is critical in TLR-mediated trained immunity.


Assuntos
Fator 88 de Diferenciação Mieloide , Receptor 4 Toll-Like , Humanos , Camundongos , Animais , Fator 88 de Diferenciação Mieloide/metabolismo , Receptor 4 Toll-Like/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Receptores Toll-Like/metabolismo , Macrófagos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo
4.
J Immunol ; 208(4): 785-792, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35115374

RESUMO

Unlike the adaptive immune system, the innate immune system has classically been characterized as being devoid of memory functions. However, recent research shows that innate myeloid and lymphoid cells have the ability to retain memory of prior pathogen exposure and become primed to elicit a robust, broad-spectrum response to subsequent infection. This phenomenon has been termed innate immune memory or trained immunity. Innate immune memory is induced via activation of pattern recognition receptors and the actions of cytokines on hematopoietic progenitors and stem cells in bone marrow and innate leukocytes in the periphery. The trained phenotype is induced and sustained via epigenetic modifications that reprogram transcriptional patterns and metabolism. These modifications augment antimicrobial functions, such as leukocyte expansion, chemotaxis, phagocytosis, and microbial killing, to facilitate an augmented host response to infection. Alternatively, innate immune memory may contribute to the pathogenesis of chronic diseases, such as atherosclerosis and Alzheimer's disease.


Assuntos
Doenças Transmissíveis/etiologia , Suscetibilidade a Doenças , Interações Hospedeiro-Patógeno/imunologia , Imunidade Inata , Memória Imunológica , Animais , Biomarcadores , Doenças Transmissíveis/metabolismo , Resistência à Doença/genética , Resistência à Doença/imunologia , Suscetibilidade a Doenças/imunologia , Metabolismo Energético , Epigênese Genética , Regulação da Expressão Gênica , Interações Hospedeiro-Patógeno/genética , Humanos , Sistema Imunitário/citologia , Sistema Imunitário/imunologia , Sistema Imunitário/metabolismo , Especificidade de Órgãos/genética , Especificidade de Órgãos/imunologia , Receptores de Reconhecimento de Padrão/metabolismo , Transdução de Sinais
5.
J Immunol ; 207(11): 2785-2798, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34740960

RESUMO

Bacterial infections are a common and deadly threat to vulnerable patients. Alternative strategies to fight infection are needed. ß-Glucan, an immunomodulator derived from the fungal cell wall, provokes resistance to infection by inducing trained immunity, a phenomenon that persists for weeks to months. Given the durability of trained immunity, it is unclear which leukocyte populations sustain this effect. Macrophages have a life span that surpasses the duration of trained immunity. Thus, we sought to define the contribution of differentiated macrophages to trained immunity. Our results show that ß-glucan protects mice from Pseudomonas aeruginosa infection by augmenting recruitment of innate leukocytes to the site of infection and facilitating local clearance of bacteria, an effect that persists for more than 7 d. Adoptive transfer of macrophages, trained using ß-glucan, into naive mice conferred a comparable level of protection. Trained mouse bone marrow-derived macrophages assumed an antimicrobial phenotype characterized by enhanced phagocytosis and reactive oxygen species production in parallel with sustained enhancements in glycolytic and oxidative metabolism, increased mitochondrial mass, and membrane potential. ß-Glucan induced broad transcriptomic changes in macrophages consistent with early activation of the inflammatory response, followed by sustained alterations in transcripts associated with metabolism, cellular differentiation, and antimicrobial function. Trained macrophages constitutively secreted CCL chemokines and robustly produced proinflammatory cytokines and chemokines in response to LPS challenge. Induction of the trained phenotype was independent of the classic ß-glucan receptors Dectin-1 and TLR-2. These findings provide evidence that ß-glucan induces enhanced protection from infection by driving trained immunity in macrophages.


Assuntos
Memória Imunológica/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Substâncias Protetoras/farmacologia , beta-Glucanas/farmacologia , Animais , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/imunologia , Feminino , Imunidade Inata/efeitos dos fármacos , Imunidade Inata/imunologia , Memória Imunológica/imunologia , Macrófagos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
6.
Front Immunol ; 11: 1043, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32547553

RESUMO

Critically ill, severely injured and high-risk surgical patients are vulnerable to secondary infections during hospitalization and after hospital discharge. Studies show that the mitochondrial function and oxidative metabolism of monocytes and macrophages are impaired during sepsis. Alternatively, treatment with microbe-derived ligands, such as monophosphoryl lipid A (MPLA), peptidoglycan, or ß-glucan, that interact with toll-like receptors and other pattern recognition receptors on leukocytes induces a state of innate immune memory that confers broad-spectrum resistance to infection with common hospital-acquired pathogens. Priming of macrophages with MPLA, CPG oligodeoxynucleotides (CpG ODN), or ß-glucan induces a macrophage metabolic phenotype characterized by mitochondrial biogenesis and increased oxidative metabolism in parallel with increased glycolysis, cell size and granularity, augmented phagocytosis, heightened respiratory burst functions, and more effective killing of microbes. The mitochondrion is a bioenergetic organelle that not only contributes to energy supply, biosynthesis, and cellular redox functions but serves as a platform for regulating innate immunological functions such as production of reactive oxygen species (ROS) and regulatory intermediates. This review will define current knowledge of leukocyte metabolic dysfunction during and after sepsis and trauma. We will further discuss therapeutic strategies that target leukocyte mitochondrial function and might have value in preventing or reversing sepsis- and trauma-induced immune dysfunction.


Assuntos
Infecções/imunologia , Leucócitos/metabolismo , Mitocôndrias/metabolismo , Sepse/imunologia , Ferimentos e Lesões/imunologia , Animais , Reprogramação Celular , Humanos , Imunidade Inata , Leucócitos/imunologia , Estresse Oxidativo
7.
Shock ; 53(3): 307-316, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31045990

RESUMO

BACKGROUND: Monophosphoryl lipid A (MPLA) is a TLR4 agonist that has potent immunomodulatory properties and modulates innate immune function to improve host resistance to infection with common nosocomial pathogens in mice. The goal of this study was to assess the safety and efficacy of MPLA in a sheep model of burn injury and Pseudomonas aeruginosa pneumonia. The sheep provides a favorable model for preclinical testing as their response to TLR4 agonists closely mimics that of humans. METHODS: Twelve chronically instrumented adult female Merino sheep received 20% total body surface area, third-degree cutaneous burn under anesthesia and analgesia. At 24 h after burn, sheep were randomly allocated to receive: MPLA (2.5 µg/kg i.v., n = 6), or vehicle (i.v., n = 6). At 24 h after MPLA or vehicle treatment, Pseudomonas aeruginosa pneumonia was induced. Sheep were mechanically ventilated, fluid resuscitated and cardiopulmonary variables were monitored for 24 h after induction of pneumonia. Cytokine production, vascular barrier function, and lung bacterial burden were also measured. RESULTS: MPLA infusion induced small and transient alterations in core body temperature, heart rate, pulmonary artery pressure, and pulmonary vascular resistance. Pulmonary mechanics were not altered. Vehicle-treated sheep developed severe acute lung injury during Pseudomonas aeruginosa pneumonia, which was attenuated by MPLA as indicated by improved PaO2/FiO2 ratio, oxygenation index, and shunt fraction. Sheep treated with MPLA also exhibited less vascular leak, lower blood lactate levels, and lower modified organ injury score. MPLA treatment attenuated systemic cytokine production and decreased lung bacterial burden. CONCLUSIONS: MPLA was well tolerated in burned sheep and attenuated development of acute lung injury, lactatemia, cytokinemia, vascular leak, and hemodynamic changes caused by Pseudomonas aeruginosa pneumonia.


Assuntos
Adjuvantes Imunológicos/uso terapêutico , Queimaduras/complicações , Lipídeo A/análogos & derivados , Insuficiência de Múltiplos Órgãos/prevenção & controle , Pneumonia Bacteriana/complicações , Infecções por Pseudomonas/complicações , Animais , Modelos Animais de Doenças , Feminino , Lipídeo A/uso terapêutico , Insuficiência de Múltiplos Órgãos/etiologia , Pneumonia Bacteriana/microbiologia , Pseudomonas aeruginosa , Ovinos
8.
Pharmacol Res ; 150: 104502, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31689522

RESUMO

Infectious diseases remain a threat to critically ill patients, particularly with the rise of antibiotic-resistant bacteria. Septic shock carries a mortality of up to ∼40% with no compelling evidence of promising therapy to reduce morbidity or mortality. Septic shock survivors are also prone to nosocomial infections. Treatment with toll-like receptor 4 (TLR4) agonists have demonstrated significant protection against common nosocomial pathogens in various clinically relevant models of infection and septic shock. TLR4 agonists are derived from a bacteria cell wall or synthesized de novo, and more recently novel small molecule TLR4 agonists have also been developed. TLR4 agonists augment innate immune functions including expansion and recruitment of innate leukocytes to the site of infection. Recent studies demonstrate TLR4-induced leukocyte metabolic reprogramming of cellular metabolism to improve antimicrobial function. Metabolic changes include sustained augmentation of macrophage glycolysis, mitochondrial function, and tricarboxylic acid cycle flux. These findings set the stage for the use of TLR4 agonists as standalone therapeutic agents or antimicrobial adjuncts in patient populations vulnerable to nosocomial infections.


Assuntos
Adjuvantes Imunológicos/uso terapêutico , Resistência à Doença/imunologia , Receptor 4 Toll-Like/agonistas , Animais , Humanos , Imunidade Inata , Controle de Infecções , Infecções/imunologia , Receptor 4 Toll-Like/imunologia
9.
Crit Care Med ; 47(11): e930-e938, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31567352

RESUMO

OBJECTIVES: To determine whether synthetic phosphorylated hexa-acyl disaccharides provide antimicrobial protection in clinically relevant models of bacterial infection. DESIGN: Laboratory study. SETTING: University laboratory. SUBJECTS: BALB/c, C57BL/10J, and C57BL/10ScNJ mice. INTERVENTIONS: Mice were treated with lactated Ringer's (vehicle) solution, monophosphoryl lipid A, or phosphorylated hexa-acyl disaccharides at 48 and 24 hours prior to intraperitoneal Pseudomonas aeruginosa or IV Staphylococcus aureus infection. Leukocyte recruitment, cytokine production, and bacterial clearance were measured 6 hours after P. aeruginosa infection. In the systemic S. aureus infection model, one group of mice was monitored for 14-day survival and another for S. aureus tissue burden at 3 days postinfection. Duration of action for 3-deacyl 6-Acyl phosphorylated hexa-acyl disaccharide was determined at 3, 10, and 14 days using a model of intraperitoneal P. aeruginosa infection. Effect of 3-deacyl 6-Acyl phosphorylated hexa-acyl disaccharide on in vivo leukocyte phagocytosis and respiratory burst was examined. Leukocyte recruitment, cytokine production, and bacterial clearance were measured after P. aeruginosa infection in wild-type and toll-like receptor 4 knockout mice treated with 3-deacyl 6-Acyl phosphorylated hexa-acyl disaccharide or vehicle to assess receptor specificity. MEASUREMENTS AND MAIN RESULTS: During intraperitoneal P. aeruginosa infection, phosphorylated hexa-acyl disaccharides significantly attenuated infection-induced hypothermia, augmented leukocyte recruitment and bacterial clearance, and decreased cytokine production. At 3 days post S. aureus infection, bacterial burden in lungs, spleen, and kidneys was significantly decreased in mice treated with monophosphoryl lipid A or phosphorylated hexa-acyl disaccharides, which was associated with improved survival. Leukocyte phagocytosis and respiratory burst functions were enhanced after treatment with monophosphoryl lipid A or phosphorylated hexa-acyl disaccharides. A time course study showed that monophosphoryl lipid A- and 3-deacyl 6-Acyl phosphorylated hexa-acyl disaccharide-mediated protection against P. aeruginosa lasts for up to 10 days. Partial loss of augmented innate antimicrobial responses was observed in toll-like receptor 4 knockout mice treated with 3-deacyl 6-Acyl phosphorylated hexa-acyl disaccharide. CONCLUSIONS: Phosphorylated hexa-acyl disaccharides significantly augment resistance against clinically relevant Gram-negative and Gram-positive infections via enhanced leukocyte recruitment, phagocytosis, and respiratory burst functions of innate leukocytes. Improved antimicrobial protection persists for up to 10 days and is partially mediated through toll-like receptor 4.


Assuntos
Infecção Hospitalar/prevenção & controle , Citocinas/metabolismo , Dissacarídeos/farmacologia , Hexosaminidase A/farmacologia , Cavidade Peritoneal/fisiopatologia , Infecções Estafilocócicas/fisiopatologia , Análise de Variância , Animais , Western Blotting/métodos , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Cavidade Peritoneal/microbiologia , Distribuição Aleatória , Infecções Estafilocócicas/mortalidade , Estatísticas não Paramétricas , Taxa de Sobrevida
10.
J Immunol ; 200(11): 3777-3789, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29686054

RESUMO

Monophosphoryl lipid A (MPLA) is a clinically used TLR4 agonist that has been found to drive nonspecific resistance to infection for up to 2 wk. However, the molecular mechanisms conferring protection are not well understood. In this study, we found that MPLA prompts resistance to infection, in part, by inducing a sustained and dynamic metabolic program in macrophages that supports improved pathogen clearance. Mice treated with MPLA had enhanced resistance to infection with Staphylococcus aureus and Candida albicans that was associated with augmented microbial clearance and organ protection. Tissue macrophages, which exhibited augmented phagocytosis and respiratory burst after MPLA treatment, were required for the beneficial effects of MPLA. Further analysis of the macrophage phenotype revealed that early TLR4-driven aerobic glycolysis was later coupled with mitochondrial biogenesis, enhanced malate shuttling, and increased mitochondrial ATP production. This metabolic program was initiated by overlapping and redundant contributions of MyD88- and TRIF-dependent signaling pathways as well as downstream mTOR activation. Blockade of mTOR signaling inhibited the development of the metabolic and functional macrophage phenotype and ablated MPLA-induced resistance to infection in vivo. Our findings reveal that MPLA drives macrophage metabolic reprogramming that evolves over a period of days to support a macrophage phenotype highly effective at mediating microbe clearance and that this results in nonspecific resistance to infection.


Assuntos
Macrófagos/metabolismo , Receptor 4 Toll-Like/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Candida albicans/efeitos dos fármacos , Candidíase/tratamento farmacológico , Candidíase/metabolismo , Glicólise/fisiologia , Lipídeo A/análogos & derivados , Macrófagos/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fator 88 de Diferenciação Mieloide/metabolismo , Transdução de Sinais/fisiologia , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/metabolismo , Staphylococcus aureus/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo
11.
J Cell Biol ; 213(4): 479-94, 2016 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-27216258

RESUMO

Basement membranes are defining features of the cellular microenvironment; however, little is known regarding their assembly outside cells. We report that extracellular Cl(-) ions signal the assembly of collagen IV networks outside cells by triggering a conformational switch within collagen IV noncollagenous 1 (NC1) domains. Depletion of Cl(-) in cell culture perturbed collagen IV networks, disrupted matrix architecture, and repositioned basement membrane proteins. Phylogenetic evidence indicates this conformational switch is a fundamental mechanism of collagen IV network assembly throughout Metazoa. Using recombinant triple helical protomers, we prove that NC1 domains direct both protomer and network assembly and show in Drosophila that NC1 architecture is critical for incorporation into basement membranes. These discoveries provide an atomic-level understanding of the dynamic interactions between extracellular Cl(-) and collagen IV assembly outside cells, a critical step in the assembly and organization of basement membranes that enable tissue architecture and function. Moreover, this provides a mechanistic framework for understanding the molecular pathobiology of NC1 domains.


Assuntos
Membrana Basal/metabolismo , Membrana Basal/fisiologia , Cloretos/metabolismo , Colágeno Tipo IV/metabolismo , Sequência de Aminoácidos , Animais , Bovinos , Linhagem Celular Tumoral , Colágeno Tipo IV/genética , Humanos , Filogenia , Conformação Proteica , Estrutura Terciária de Proteína , Subunidades Proteicas/genética
12.
Biochem Biophys Res Commun ; 456(2): 610-4, 2015 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-25499815

RESUMO

Countering the diabetes pandemic and consequent complications, such as nephropathy, will require better understanding of disease mechanisms and development of new diagnostic methods. Animal models can be versatile tools in studies of diabetic renal disease when model pathology is relevant to human diabetic nephropathy (DN). Diabetic models using endothelial nitric oxide synthase (eNOS) knock-out mice develop major renal lesions characteristic of human disease. However, it is unknown whether they can also reproduce changes in urinary metabolites found in human DN. We employed Type 1 and Type 2 diabetic mouse models of DN, i.e. STZ-eNOS(-/-) C57BLKS and eNOS(-/-) C57BLKS db/db, with the goal of determining changes in urinary metabolite profile using proton nuclear magnetic resonance (NMR). Six urinary metabolites with significantly lower levels in diabetic compared to control mice have been identified. Specifically, major changes were found in metabolites from tricarboxylic acid (TCA) cycle and aromatic amino acid catabolism including 3-indoxyl sulfate, cis-aconitate, 2-oxoisocaproate, N-phenyl-acetylglycine, 4-hydroxyphenyl acetate, and hippurate. Levels of 4-hydroxyphenyl acetic acid and hippuric acid showed the strongest reverse correlation to albumin-to-creatinine ratio (ACR), which is an indicator of renal damage. Importantly, similar changes in urinary hydroxyphenyl acetate and hippurate were previously reported in human renal disease. We demonstrated that STZ-eNOS(-/-) C57BLKS and eNOS(-/-) C57BLKS db/db mouse models can recapitulate changes in urinary metabolome found in human DN and therefore can be useful new tools in metabolomic studies relevant to human pathology.


Assuntos
Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Tipo 2/complicações , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/urina , Ácido Aconítico/metabolismo , Ácido Aconítico/urina , Animais , Glicina/análogos & derivados , Glicina/metabolismo , Glicina/urina , Hipuratos/metabolismo , Hipuratos/urina , Indicã/metabolismo , Indicã/urina , Cetoácidos/metabolismo , Cetoácidos/urina , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Óxido Nítrico Sintase Tipo III/genética , Fenilacetatos/metabolismo , Fenilacetatos/urina
13.
Proc Natl Acad Sci U S A ; 111(1): 331-6, 2014 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-24344311

RESUMO

Basement membrane, a specialized ECM that underlies polarized epithelium of eumetazoans, provides signaling cues that regulate cell behavior and function in tissue genesis and homeostasis. A collagen IV scaffold, a major component, is essential for tissues and dysfunctional in several diseases. Studies of bovine and Drosophila tissues reveal that the scaffold is stabilized by sulfilimine chemical bonds (S = N) that covalently cross-link methionine and hydroxylysine residues at the interface of adjoining triple helical protomers. Peroxidasin, a heme peroxidase embedded in the basement membrane, produces hypohalous acid intermediates that oxidize methionine, forming the sulfilimine cross-link. We explored whether the sulfilimine cross-link is a fundamental requirement in the genesis and evolution of epithelial tissues by determining its occurrence and evolutionary origin in Eumetazoa and its essentiality in zebrafish development; 31 species, spanning 11 major phyla, were investigated for the occurrence of the sulfilimine cross-link by electrophoresis, MS, and multiple sequence alignment of de novo transcriptome and available genomic data for collagen IV and peroxidasin. The results show that the cross-link is conserved throughout Eumetazoa and arose at the divergence of Porifera and Cnidaria over 500 Mya. Also, peroxidasin, the enzyme that forms the bond, is evolutionarily conserved throughout Metazoa. Morpholino knockdown of peroxidasin in zebrafish revealed that the cross-link is essential for organogenesis. Collectively, our findings establish that the triad-a collagen IV scaffold with sulfilimine cross-links, peroxidasin, and hypohalous acids-is a primordial innovation of the ECM essential for organogenesis and tissue evolution.


Assuntos
Membrana Basal/metabolismo , Evolução Biológica , Iminas/química , Compostos de Enxofre/química , Sequência de Aminoácidos , Animais , Colágeno Tipo IV/química , Reagentes de Ligações Cruzadas/química , Drosophila melanogaster , Matriz Extracelular/metabolismo , Proteínas da Matriz Extracelular/química , Heme/química , Espectrometria de Massas , Dados de Sequência Molecular , Peptídeos/química , Peroxidase/química , Peroxidases/química , Estrutura Terciária de Proteína , Análise de Sequência de RNA , Homologia de Sequência de Aminoácidos , Peixe-Zebra , Peroxidasina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...