Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(6)2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38544223

RESUMO

Colorimetric characterisation systems based on LEDs and RBG sensors are straightforward to implement, are highly integrable allowing for portable measurement systems and can be constructed using widespread and affordable components. They have already proved to be a satisfactory solution in several applications related to chemical analysis. In this paper, we present an RGB sensor-based prototype for colorimetric characterisation, which can accommodate cuvettes with optical paths of 10 mm and 40 mm. We assessed the impact of experimental condition parameters such as the variability of the analyte volume in the cuvette, as well as the presence of floating particles or deposits at the bottom of the cuvette. While these would not impact the result given by a spectrophotometer that generally has a directional light source, they must be considered in LED/RGB sensor analysers in which the light path is not tightly controlled. We demonstrated that there is a minimal sensor height above the bottom of the cuvette and a minimal analyte level (both depending on the prototype optical path length) above which the analyte volume and the presence of floating particles and deposits have no impact on the prototype output signal. Finally, based on these results, we proposed a test method for a quick dye-displacement assay, in which the reagent is a dye-loaded molecularly imprinted polymer that is poured directly into a cuvette.

2.
Micromachines (Basel) ; 14(12)2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38138366

RESUMO

In this paper, we presented a novel, compact, conceptually simple, and fully functional low-cost prototype of a pH sensor with a PANI thin film as a sensing layer. The PANI deposition process is truly low-cost; it performs from the liquid phase, does not required any specialized equipment, and comprises few processing steps. The resulting PANI layer has excellent stability, resistance to solvents, and bio- and chemical compatibility. The pH sensor's sensing part includes only a few components such as a red-light-emitting diode (LED) as a light source, and a corresponding photodiode (PD) as a detector. Unlike other PANI-based sensors, it requires no sophisticated and expensive techniques and components such lasers to excite the PANI or spectrometry to identify the PANI color change induced by pH variation. The pH sensor is sensitive in the broad pH range of 3 to 9, which is useful for numerous practical applications. The sensor requires a tiny volume of the test specimen, as little as 55 µL. We developed a fully integrated packaging solution for the pH sensor that comprises a limited number of components. The pH sensor comprises exclusively commercial off-the-shelf (COTS) components and standard printed circuit boards. The pH sensor is assembled using standard surface mounting technology (SMT).

3.
Materials (Basel) ; 16(18)2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37763479

RESUMO

We designed a 3D geometrical model of a metal-oxide gas sensor and its custom packaging and used it in finite element modeling (FEM) analysis for obtaining temperature and heat flux distribution. The 3D computer simulation, performed with GetDP software (version 3.5.0, 13 May 2022), accurately predicted the temperature distribution variation across the entire assembly. Knowing the temperature variation and the location of the hot spots allowed us to select the best electrical interconnect method and to choose the optimal materials combination and optimal geometry. The thermal modeling also confirmed the need to use a low thermal conductivity material to insulate the MOX sensor since the latter is heated to its operational temperature of 250 °C. For that purpose, we used the in-house formulated xerogel-epoxy composite of thermal conductivity of 0.108 W m-1 K-1, which is at least 30% less compared to the best-in-class among commercially available materials. Based on the 3D FEM outputs, we designed, assembled, and characterized a fully functional packaged MOX gas sensor in several configurations. We measured the temperature distribution on all parts of the MOX gas sensor assembly using a thermal imaging infrared (IR) microscope. The results of 3D FEM are in good agreement with the temperature distribution obtained by the non-contact IR thermal characterization.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...