Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 94(11)2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37955555

RESUMO

A methodology for measuring x-ray continuum spectra of inertial confinement fusion (ICF) implosions is described. The method relies on the use of ConSpec, a high-throughput spectrometer using a highly annealed pyrolytic graphite crystal [MacDonald et al., J. Instrum. 14, P12009 (2019)], which measures the spectra in the ≃20-30 keV range. Due to its conical shape, the crystal is sagittally focusing a Bragg-reflected x-ray spectrum into a line, which enhances the recorded x-ray emission signal above the high neutron-induced background accompanying ICF implosions at the National Ignition Facility. To improve the overall measurement accuracy, the sensitivity of the spectrometer measured in an off-line x-ray laboratory setting was revised. The error analysis was expanded to include the accuracy of the off-line measurements, the effect of the neutron-induced background, as well as the influence of possible errors in alignment of the instrument to the ICF target. We demonstrate how the improved methodology is applied in the analysis of ConSpec data with examples of a relatively low-neutron-yield implosion using a tritium-hydrogen-deuterium mix as a fuel and a high-yield deuterium-tritium (DT) implosion producing high level of the background. In both cases, the shape of the measured spectrum agrees with the exponentially decaying spectral shape of bremsstrahlung emission to within ±10%. In the case of the high-yield DT experiment, non-monotonic deviations slightly exceeding the measurement uncertainties are observed and discussed.

2.
Nat Commun ; 14(1): 7046, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37949859

RESUMO

Large laser facilities have recently enabled material characterization at the pressures of Earth and Super-Earth cores. However, the temperature of the compressed materials has been largely unknown, or solely relied on models and simulations, due to lack of diagnostics under these challenging conditions. Here, we report on temperature, density, pressure, and local structure of copper determined from extended x-ray absorption fine structure and velocimetry up to 1 Terapascal. These results nearly double the highest pressure at which extended x-ray absorption fine structure has been reported in any material. In this work, the copper temperature is unexpectedly found to be much higher than predicted when adjacent to diamond layer(s), demonstrating the important influence of the sample environment on the thermal state of materials; this effect may introduce additional temperature uncertainties in some previous experiments using diamond and provides new guidance for future experimental design.

3.
Phys Rev Lett ; 131(6): 065101, 2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37625041

RESUMO

The change in the power balance, temporal dynamics, emission weighted size, temperature, mass, and areal density of inertially confined fusion plasmas have been quantified for experiments that reach target gains up to 0.72. It is observed that as the target gain rises, increased rates of self-heating initially overcome expansion power losses. This leads to reacting plasmas that reach peak fusion production at later times with increased size, temperature, mass and with lower emission weighted areal densities. Analytic models are consistent with the observations and inferences for how these quantities evolve as the rate of fusion self-heating, fusion yield, and target gain increase. At peak fusion production, it is found that as temperatures and target gains rise, the expansion power loss increases to a near constant ratio of the fusion self-heating power. This is consistent with models that indicate that the expansion losses dominate the dynamics in this regime.

4.
Rev Sci Instrum ; 93(11): 113520, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36461491

RESUMO

The Imaging Spectroscopy Snout (ISS) used at the National Ignition Facility is able to simultaneously collect neutron pinhole images, 1D spatially resolved x-ray spectra, and time resolved x-ray pinhole images. To measure the x-ray spectra, the ISS can be equipped with up to four different transmission crystals, each offering different energy ranges from ∼7.5 to ∼12 keV and different resolutions. Characterizing and calibrating such instruments is of paramount importance in order to extract meaningful results from experiments. More specifically, we characterized different ISS transmission-type alpha-Quartz crystals by measuring their responses as a function of photon energy, from which we inferred the angle-integrated reflectivity for each crystal's working reflections. These measurements were made at the Lawrence Livermore National Laboratory calibration station dedicated to the characterization of x-ray spectrometers. The sources used covered a wide x-ray range-from a few to 30 keV; the source diameter was ∼0.6 mm. The experimental results are discussed alongside theoretical calculations using the pyTTE model.

5.
Rev Sci Instrum ; 93(10): 103548, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36319320

RESUMO

A new class of crystal shapes has been developed for x-ray spectroscopy of point-like or small (a few mm) emission sources. These optics allow for dramatic improvement in both achievable energy resolution and total throughput of the spectrometer as compared with traditional designs. This class of crystal shapes, collectively referred to as the Variable-Radii Spiral (VR-Spiral), utilize crystal shapes in which both the major and minor radii are variable. A crystal using this novel VR-Spiral shape has now been fabricated for high-resolution Extended X-ray Absorption Fine Structure (EXAFS) experiments targeting the Pb-L3 (13.0 keV) absorption edge at the National Ignition Facility. The performance of this crystal has been characterized in the laboratory using a microfocus x-ray source, showing that high-resolution high-throughput EXAFS spectra can be acquired using this geometry. Importantly, these successful tests show that the complex three-dimensional crystal shape is manufacturable with the required precision needed to realize the expected performance of better than 5 eV energy resolution while using a 30 mm high crystal. An improved generalized mathematical form for VR-Spiral shapes is also presented allowing improved optimization as compared to the first sinusoidal-spiral based design. This new formulation allows VR-Spiral spectrometers to be designed at any magnification with optimized energy resolution at all energies within the spectrometer bandwidth.

6.
Rev Sci Instrum ; 93(9): 093510, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36182490

RESUMO

A Monte Carlo technique has been developed to simulate the expected signal and the statistical noise of x-ray spectrometers that use streak cameras to achieve the time resolution required for ultrafast diagnostics of laser-generated plasmas. The technique accounts for statistics from both the photons incident on the streak camera's photocathode and the electrons emitted by the photocathode travelling through the camera's electron optics to the sensor. We use the technique to optimize the design of a spectrometer, which deduces the temporal history of electron temperature of the hotspot in an inertial confinement fusion implosion from its hard x-ray continuum emission spectra. The technique is general enough to be applied to any instrument using an x-ray streak camera.

7.
Rev Sci Instrum ; 92(9): 093904, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34598494

RESUMO

A novel high-resolution x-ray spectrometer for point-like emission sources has been developed using a crystal shape having both a variable major and a variable minor radius of curvature. This variable-radii sinusoidal spiral spectrometer (VR-Spiral) allows three common spectrometer design goals to be achieved simultaneously: 1. reduction of aberrations and improved spectral (energy) resolution, 2. reduction of source size broadening, and 3. use of large crystals to improve total throughput. The VR-Spiral concept and its application to practical spectrometer design are described in detail. This concept is then used to design a spectrometer for an extreme extended x-ray absorption fine structure experiment at the National Ignition Facility looking at the Pb L3 absorption edge at 13.0352 keV. The expected performance of this VR-Spiral spectrometer, both in terms of energy resolution and spatial resolution, is evaluated through the use of a newly developed raytracing tool, xicsrt. Finally, the expected performance of the VR-Spiral concept is compared to that of spectrometers based on conventional toroidal and variable-radii toroidal crystal geometries showing a greatly improved energy resolution.

8.
Rev Sci Instrum ; 92(5): 053102, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-34243250

RESUMO

We report the development of a high-resolution spectrometer for extended x-ray absorption fine structure (EXAFS) studies of materials under extreme conditions. A curved crystal and detector in the spectrometer are replaceable such that a single body is employed to perform EXAFS measurements at different x-ray energy intervals of interest. Two configurations have been implemented using toroidal crystals with Ge 311 reflection set to provide EXAFS at the Cu K-edge (energy range 8.9-9.8 keV) and Ge 400 reflection set to provide EXAFS at the Ta L3-edge (9.8-10.7 keV). Key performance characteristics of the spectrometer were found to be consistent with design parameters. The data generated at the National Ignition Facility have shown an ≃3 eV spectral resolution for the Cu K-edge configuration and ≃6 eV for the Ta L3-edge configuration.

9.
Rev Sci Instrum ; 92(4): 043531, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-34243385

RESUMO

This paper describes a new class of focusing crystal forms for the x-ray Bragg crystal spectroscopy of small, point-like, x-ray sources. These new crystal forms are designed with the aid of sinusoidal spirals, a family of curves, whose shapes are defined by only one parameter, which can assume any real value. The potential of the sinusoidal spirals for the design x-ray crystal spectrometers is demonstrated with the design of a toroidally bent crystal of varying major and minor radii for measurements of the extended x-ray absorption fine structure near the Ta-L3 absorption edge at the National Ignition Facility.

10.
Acta Crystallogr A Found Adv ; 74(Pt 5): 567-577, 2018 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-30182943

RESUMO

The absolute X-ray reflectivity of chemically vapor-deposited (CVD) single-crystal diamond plates was measured in the Laue geometry in the double-crystal non-dispersive setting with an asymmetric Si beam-conditioner crystal. The measurements were supplemented by rocking-curve topography. The measured reflectivity curves are examined in the framework of the Darwin-Hamilton approach using a set of two independent parameters: the characteristic thickness of mosaic blocks and their average angular misorientation. Owing to strong extinction effects, the width of the reflectivity curves does not directly represent the average misorientation of the blocks. Two different sets of parameters were found for the 111 asymmetric reflection in the two different scattering configurations (beam compression and beam expansion). Analysis of the rocking-curve topographs shows that this discrepancy can be attributed to inhomogeneity of the diamond crystal microstructure.

11.
J Synchrotron Radiat ; 23(Pt 3): 850, 2016 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-27140168

RESUMO

A correction is made to a citation in the article by Antipov et al. (2016) [J. Synchrotron Rad. 23, 163-168].

12.
J Synchrotron Radiat ; 23(1): 163-8, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26698059

RESUMO

The fabrication and performance evaluation of single-crystal diamond refractive X-ray lenses of which the surfaces are paraboloids of revolution for focusing X-rays in two dimensions simultaneously are reported. The lenses were manufactured using a femtosecond laser micromachining process and tested using X-ray synchrotron radiation. Such lenses were stacked together to form a standard compound refractive lens (CRL). Owing to the superior physical properties of the material, diamond CRLs could become indispensable wavefront-preserving primary focusing optics for X-ray free-electron lasers and the next-generation synchrotron storage rings. They can be used for highly efficient refocusing of the extremely bright X-ray sources for secondary optical schemes with limited aperture such as nanofocusing Fresnel zone plates and multilayer Laue lenses.


Assuntos
Cristalização , Diamante , Óptica e Fotônica , Raios X
13.
J Synchrotron Radiat ; 22(3): 626-33, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25931078

RESUMO

Multiplexing of the Linac Coherent Light Source beam was demonstrated for hard X-rays by spectral division using a near-perfect diamond thin-crystal monochromator operating in the Bragg geometry. The wavefront and coherence properties of both the reflected and transmitted beams were well preserved, thus allowing simultaneous measurements at two separate instruments. In this report, the structure determination of a prototypical protein was performed using serial femtosecond crystallography simultaneously with a femtosecond time-resolved XANES studies of photoexcited spin transition dynamics in an iron spin-crossover system. The results of both experiments using the multiplexed beams are similar to those obtained separately, using a dedicated beam, with no significant differences in quality.

14.
J Appl Crystallogr ; 47(Pt 4): 1329-1336, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-25242912

RESUMO

A double-crystal diamond (111) monochromator recently implemented at the Linac Coherent Light Source (LCLS) enables splitting of the primary X-ray beam into a pink (transmitted) and a monochromatic (reflected) branch. The first monochromator crystal, with a thickness of ∼100 µm, provides sufficient X-ray transmittance to enable simultaneous operation of two beamlines. This article reports the design, fabrication and X-ray characterization of the first and second (300 µm-thick) crystals utilized in the monochromator and the optical assemblies holding these crystals. Each crystal plate has a region of about 5 × 2 mm with low defect concentration, sufficient for use in X-ray optics at the LCLS. The optical assemblies holding the crystals were designed to provide mounting on a rigid substrate and to minimize mounting-induced crystal strain. The induced strain was evaluated using double-crystal X-ray topography and was found to be small over the 5 × 2 mm working regions of the crystals.

15.
J Synchrotron Radiat ; 21(Pt 1): 16-23, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24365912

RESUMO

Multilayers are becoming an increasingly important tool in X-ray optics. The essential parameters to design a pair of laterally graded multilayer mirrors arranged in a Montel-type configuration for use as an X-ray collimating device are provided. The results of X-ray reflectometry tests carried out on the optics in addition to metrology characterization are also shown. Finally, using experimental data and combined with X-ray tracing simulations it is demonstrated that the mirror meets all stringent specifications as required for a novel ultra-high-resolution inelastic X-ray scattering spectrometer at the Advanced Photon Source.

16.
Opt Express ; 21(25): 30932-46, 2013 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-24514666

RESUMO

We report on the design, implementation, and performance of an x-ray monochromator with ultra-high energy resolution (ΔE/E ≃ 2.7 × 10(-8)) and high spectral efficiency using x rays with photon energies E ≃ 9.13 keV. The operating principle of the monochromator is based on the phenomenon of angular dispersion in Bragg back-diffraction. The optical scheme of the monochromator is a modification of a scheme reported earlier [Shvyd'ko et al., Phys. Rev. A 84, 053823 (2011)], where a collimator/wavelength selector Si crystal was replaced with a 100-µm-thick type IIa diamond crystal. This modification provides a very-small-energy bandwidth ΔE ≃ 0.25 meV, a 3-fold increase in the aperture of the accepted beam, a reduction in the cumulative angular dispersion rate of x rays emanating from the monochromator for better focusing on a sample, a sufficient angular acceptance matching the angular divergence of an undulator source (≈ 10 µrad), and an improved throughput due to low x-ray absorption in the thin diamond crystal. The measured spectral efficiency of the monochromator was ≈ 65% with an aperture of 0.3 × 1 mm(2). The performance parameters of the monochromator are suitable for inelastic x-ray spectroscopy with an absolute energy resolution ΔE < 1 meV.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...