Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
N Biotechnol ; 82: 92-106, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-38788897

RESUMO

Species of Saccharomyces genus have played an irreplaceable role in alcoholic beverage and baking industry for centuries. S. cerevisiae has also become an organism of choice for industrial production of alcohol and other valuable chemicals and a model organism shaping the rise of modern genetics and genomics in the past few decades. Today´s brewing industry faces challenges of decreasing consumption of traditional beer styles and increasing consumer demand for new styles, flavors and aromas. The number of currently used brewer's strains and their genetic diversity is yet limited and implementation of more genetic and phenotypic variation is seen as a solution to cope with the market challenges. This requires modification of current production strains or introduction of novel strains from other settings, e.g. industrial or wild habitats into the brewing industry. Due to legal regulation in many countries and negative customer perception of GMO organisms, the production of food and beverages requires non-GMO production organisms, whose development can be difficult and time-consuming. Here, we apply FIND-IT (Fast Identification of Nucleotide variants by DigITal PCR), an ultrafast genome-mining method, for isolation of novel yeast variants with varying flavor profiles. The FIND-IT method uses combination of random mutagenesis, droplet digital PCR with probes that target a specific desired mutation and a sub-isolation of the mutant clone. Such an approach allows the targeted identification and isolation of specific mutant strains with eliminated production of certain flavor and off-flavors and/or changes in the strain metabolism. We demonstrate that the technology is useful for the identification of loss-of function or gain of function mutations in unrelated industrial and wild strains differing in ploidy. Where no other phenotypic selection exists, this technology serves together with standard breeding techniques as a modern tool facilitating a modification of (brewer's) yeast strains leading to diversification of the product portfolio.


Assuntos
Cerveja , Engenharia Metabólica , Saccharomyces , Cerveja/microbiologia , Saccharomyces/genética , Saccharomyces/metabolismo , Aromatizantes/metabolismo , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética
2.
Biotechnol Biofuels Bioprod ; 15(1): 22, 2022 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-35219341

RESUMO

BACKGROUND: Lignosulfonates are significant wood chemicals with a $700 million market, produced by sulfite pulping of wood. During the pulping process, spent sulfite liquor (SSL) is generated, which in addition to lignosulfonates contains hemicellulose-derived sugars-in case of hardwoods primarily the pentose sugar xylose. The pentoses are currently underutilized. If they could be converted into value-added chemicals, overall economic profitability of the process would increase. SSLs are typically very inhibitory to microorganisms, which presents a challenge for a biotechnological process. The aim of the present work was to develop a robust yeast strain able to convert xylose in SSL to carboxylic acids. RESULTS: The industrial strain Ethanol Red of the yeast Saccharomyces cerevisiae was engineered for efficient utilization of xylose in a Eucalyptus globulus lignosulfonate stream at low pH using CRISPR/Cas genome editing and adaptive laboratory evolution. The engineered strain grew in synthetic medium with xylose as sole carbon source with maximum specific growth rate (µmax) of 0.28 1/h. Selected evolved strains utilized all carbon sources in the SSL at pH 3.5 and grew with µmax between 0.05 and 0.1 1/h depending on a nitrogen source supplement. Putative genetic determinants of the increased tolerance to the SSL were revealed by whole genome sequencing of the evolved strains. In particular, four top-candidate genes (SNG1, FIT3, FZF1 and CBP3) were identified along with other gene candidates with predicted important roles, based on the type and distribution of the mutations across different strains and especially the best performing ones. The developed strains were further engineered for production of dicarboxylic acids (succinic and malic acid) via overexpression of the reductive branch of the tricarboxylic acid cycle (TCA). The production strain produced 0.2 mol and 0.12 mol of malic acid and succinic acid, respectively, per mol of xylose present in the SSL. CONCLUSIONS: The combined metabolic engineering and adaptive evolution approach provided a robust SSL-tolerant industrial strain that converts fermentable carbon content of the SSL feedstock into malic and succinic acids at low pH.in production yields reaching 0.1 mol and 0.065 mol per mol of total consumed carbon sources.. Moreover, our work suggests potential genetic background of the tolerance to the SSL stream pointing out potential gene targets for improving the tolerance to inhibitory industrial feedstocks.

3.
Front Genet ; 11: 582789, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33240329

RESUMO

Fermented foods and particularly beer have accompanied the development of human civilization for thousands of years. Saccharomyces cerevisiae, the dominant yeast in the production of alcoholic beverages, probably co-evolved with human activity. Considering that alcoholic fermentations emerged worldwide, the number of strains used in beer production nowadays is surprisingly low. Thus, the genetic diversity is often limited. This is among others related to the switch from a household brewing style to a more artisan brewing regime during the sixteenth century and latterly the development of single yeast isolation techniques at the Carlsberg Research Laboratory in 1883, resulting in process optimizations in the brewing industry. However, due to fierce competition within the beer market and the increasing demand for novel beer styles, diversification is becoming increasingly important. Moreover, the emergence of craft brewing has influenced big breweries to rediscover yeast as a significant contributor to a beer's aroma profile and realize that there is still room for innovation in the fermentation process. Here, we aim at giving a brief overview on how currently used S. cerevisiae brewing yeasts emerged and comment on the rationale behind replacing them with novel strains. We will present potential sources of yeasts that have not only been used in beer brewing before, including natural sources and sources linked to human activity but also an overlooked source, such as yeast culture collections. We will briefly comment on common yeast isolation techniques and finally touch on additional challenges for the brewing industry in replacing their current brewer's yeasts.

4.
Int J Mol Sci ; 21(11)2020 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-32485964

RESUMO

Multicellular structures formed by yeasts and other microbes are valuable models for investigating the processes of cell-cell interaction and pattern formation, as well as cell signaling and differentiation. These processes are essential for the organization and development of diverse microbial communities that are important in everyday life. Two major types of multicellular structures are formed by yeast Saccharomyces cerevisiae on semisolid agar. These are colonies formed by laboratory or domesticated strains and structured colony biofilms formed by wild strains. These structures differ in spatiotemporal organization and cellular differentiation. Using state-of-the-art microscopy and mutant analysis, we investigated the distribution of cells within colonies and colony biofilms and the involvement of specific processes therein. We show that prominent differences between colony and biofilm structure are determined during early stages of development and are associated with the different distribution of growing cells. Two distinct cell distribution patterns were identified-the zebra-type and the leopard-type, which are genetically determined. The role of Flo11p in cell adhesion and extracellular matrix production is essential for leopard-type distribution, because FLO11 deletion triggers the switch to zebra-type cell distribution. However, both types of cell organization are independent of cell budding polarity and cell separation as determined using respective mutants.


Assuntos
Biofilmes , Saccharomyces cerevisiae/fisiologia , Divisão Celular , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Interações Microbianas , Mutação , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
5.
Proc Natl Acad Sci U S A ; 116(39): 19415-19420, 2019 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-31467169

RESUMO

Biobased C4-dicarboxylic acids are attractive sustainable precursors for polymers and other materials. Commercial scale production of these acids at high titers requires efficient secretion by cell factories. In this study, we characterized 7 dicarboxylic acid transporters in Xenopus oocytes and in Saccharomyces cerevisiae engineered for dicarboxylic acid production. Among the tested transporters, the Mae1(p) from Schizosaccharomyces pombe had the highest activity toward succinic, malic, and fumaric acids and resulted in 3-, 8-, and 5-fold titer increases, respectively, in S. cerevisiae, while not affecting growth, which was in contrast to the tested transporters from the tellurite-resistance/dicarboxylate transporter (TDT) family or the Na+ coupled divalent anion-sodium symporter family. Similar to SpMae1(p), its homolog in Aspergillus carbonarius, AcDct(p), increased the malate titer 12-fold without affecting the growth. Phylogenetic and protein motif analyses mapped SpMae1(p) and AcDct(p) into the voltage-dependent slow-anion channel transporter (SLAC1) clade of transporters, which also include plant Slac1(p) transporters involved in stomata closure. The conserved phenylalanine residue F329 closing the transport pore of SpMae1(p) is essential for the transporter activity. The voltage-dependent SLAC1 transporters do not use proton or Na+ motive force and are, thus, less energetically expensive than the majority of other dicarboxylic acid transporters. Such transporters present a tremendous advantage for organic acid production via fermentation allowing a higher overall product yield.


Assuntos
Ácidos Dicarboxílicos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Aminoácidos , Animais , Aspergillus/classificação , Aspergillus/genética , Fermentação , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Mutação , Oócitos/metabolismo , Transportadores de Ânions Orgânicos/química , Transportadores de Ânions Orgânicos/genética , Filogenia , Conformação Proteica , Saccharomyces cerevisiae/classificação , Schizosaccharomyces/classificação , Schizosaccharomyces/genética , Xenopus/genética , Xenopus/metabolismo
6.
Biotechnol J ; 14(9): e1900013, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30969019

RESUMO

Saccharomyces cerevisiae (S. cerevisiae) is the yeast cell factory of choice for the production of many biobased chemicals. However, it is a Crabtree-positive yeast and so shuttles a large portion of carbon into ethanol. Ethanol formation can be eliminated by deleting pyruvate decarboxylase (PDC) activity. It is not yet well understood how PDC-negative yeasts are affected when engineered to produce other products than ethanol. In this study, pathways are introduced for the production of three hydroxy acids (lactic, malic, or 3-hydroxypropionic acid [3HP]) into an evolved PDC-negative strain. These strains are characterized via transcriptome and flux profiling to elucidate the effects that the production of these hydroxy acids has on the host strain. Expression of lactic and malic acid biosynthesis pathways improved the maximum specific growth rate (µmax ) of the strain by 64% and 20%, respectively, presumably due to nicotinamide adenine dinucleotide regeneration. All strains show a very high flux ( > 90% of glucose uptake) into the oxidative pentose phosphate pathway under batch fermentation conditions. The study, for the first time, directly compares the flux and transcriptome profiles of several hydroxy acid-producing strains of an evolved PDC-negative S. cerevisiae and suggests directions for future metabolic engineering.


Assuntos
Saccharomyces cerevisiae/genética , Transcriptoma/genética , Carbono/metabolismo , Hidroxiácidos/metabolismo , Engenharia Metabólica/métodos
7.
FEMS Yeast Res ; 17(5)2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28505256

RESUMO

The methods based on the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) system have quickly gained popularity for genome editing and transcriptional regulation in many organisms, including yeast. This review aims to provide a comprehensive overview of CRISPR application for different yeast species: from basic principles and genetic design to applications.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes/métodos , Genética Microbiana/métodos , Engenharia Metabólica/métodos , Saccharomyces cerevisiae/genética
8.
Biotechnol J ; 11(8): 1110-7, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27166612

RESUMO

Saccharomyces cerevisiae is an established industrial host for production of recombinant proteins, fuels and chemicals. To enable stable integration of multiple marker-free overexpression cassettes in the genome of S. cerevisiae, we have developed a vector toolkit EasyClone-MarkerFree. The integration of linearized expression cassettes into defined genomic loci is facilitated by CRISPR/Cas9. Cas9 is recruited to the chromosomal location by specific guide RNAs (gRNAs) expressed from a set of gRNA helper vectors. Using our genome engineering vector suite, single and triple insertions are obtained with 90-100% and 60-70% targeting efficiency, respectively. We demonstrate application of the vector toolkit by constructing a haploid laboratory strain (CEN.PK113-7D) and a diploid industrial strain (Ethanol Red) for production of 3-hydroxypropionic acid, where we tested three different acetyl-CoA supply strategies, requiring overexpression of three to six genes each. Among the tested strategies was a bacterial cytosolic pyruvate dehydrogenase complex, which was integrated into the genome in a single transformation. The publicly available EasyClone-MarkerFree vector suite allows for facile and highly standardized genome engineering, and should be of particular interest to researchers working on yeast chassis with limited markers available.


Assuntos
Engenharia Genética/métodos , RNA Guia de Cinetoplastídeos/genética , Saccharomyces cerevisiae/genética , Sistemas CRISPR-Cas , Loci Gênicos , Vetores Genéticos/genética , Transformação Genética
9.
J Ind Microbiol Biotechnol ; 42(11): 1519-31, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26376869

RESUMO

Saccharomyces cerevisiae is one of the key cell factories for production of chemicals and active pharmaceuticals. For large-scale fermentations, particularly in biorefinery applications, it is desirable to use stress-tolerant industrial strains. However, such strains are less amenable for metabolic engineering than the standard laboratory strains. To enable easy delivery and overexpression of genes in a wide range of industrial S. cerevisiae strains, we constructed a set of integrative vectors with long homology arms and dominant selection markers. The vectors integrate into previously validated chromosomal locations via double cross-over and result in homogenous stable expression of the integrated genes, as shown for several unrelated industrial strains. Cre-mediated marker rescue is possible for removing markers positioned on different chromosomes. To demonstrate the applicability of the presented vector set for metabolic engineering of industrial yeast, we constructed xylose-utilizing strains overexpressing xylose isomerase, xylose transporter and five genes of the pentose phosphate pathway.


Assuntos
Regulação Fúngica da Expressão Gênica , Engenharia Genética/métodos , Vetores Genéticos/genética , Saccharomyces cerevisiae/genética , Aldose-Cetose Isomerases/genética , Aldose-Cetose Isomerases/metabolismo , Cromossomos Fúngicos/genética , Troca Genética , Fermentação , Marcadores Genéticos/genética , Engenharia Metabólica/métodos , Via de Pentose Fosfato/genética , Saccharomyces cerevisiae/classificação , Saccharomyces cerevisiae/metabolismo , Xilose/metabolismo
10.
Metab Eng Commun ; 2: 13-22, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34150504

RESUMO

There is a demand to develop 3rd generation biorefineries that integrate energy production with the production of higher value chemicals from renewable feedstocks. Here, robust and stress-tolerant industrial strains of Saccharomyces cerevisiae will be suitable production organisms. However, their genetic manipulation is challenging, as they are usually diploid or polyploid. Therefore, there is a need to develop more efficient genetic engineering tools. We applied a CRISPR-Cas9 system for genome editing of different industrial strains, and show simultaneous disruption of two alleles of a gene in several unrelated strains with the efficiency ranging between 65% and 78%. We also achieved simultaneous disruption and knock-in of a reporter gene, and demonstrate the applicability of the method by designing lactic acid-producing strains in a single transformation event, where insertion of a heterologous gene and disruption of two endogenous genes occurred simultaneously. Our study provides a foundation for efficient engineering of industrial yeast cell factories.

11.
BMC Genomics ; 15: 136, 2014 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-24533484

RESUMO

BACKGROUND: Saccharomyces cerevisiae strains isolated from natural settings form structured biofilm colonies that are equipped with intricate protective mechanisms. These wild strains are able to reprogram themselves with a certain frequency during cultivation in plentiful laboratory conditions. The resulting domesticated strains switch off certain protective mechanisms and form smooth colonies that resemble those of common laboratory strains. RESULTS: Here, we show that domestication can be reversed when a domesticated strain is challenged by various adverse conditions; the resulting feral strain restores its ability to form structured biofilm colonies. Phenotypic, microscopic and transcriptomic analyses show that phenotypic transition is a complex process that affects various aspects of feral strain physiology; it leads to a phenotype that resembles the original wild strain in some aspects and the domesticated derivative in others. We specify the genetic determinants that are likely involved in the formation of a structured biofilm colonies. In addition to FLO11, these determinants include genes that affect the cell wall and membrane composition. We also identify changes occurring during phenotypic transitions that affect other properties of phenotypic strain-variants, such as resistance to the impact of environmental stress. Here we document the regulatory role of the histone deacetylase Hda1p in developing such a resistance. CONCLUSIONS: We provide detailed analysis of transcriptomic and phenotypic modulations of three related S. cerevisiae strains that arose by phenotypic switching under diverse environmental conditions. We identify changes specifically related to a strain's ability to create complex structured colonies; we also show that other changes, such as genome rearrangement(s), are unrelated to this ability. Finally, we identify the importance of histone deacetylase Hda1p in strain resistance to stresses.


Assuntos
Saccharomyces cerevisiae/genética , Biofilmes , Regulação Fúngica da Expressão Gênica , Genoma Fúngico , Glicoproteínas/genética , Glicoproteínas/metabolismo , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Fenótipo , Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
12.
Commun Integr Biol ; 5(2): 203-5, 2012 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-22808334

RESUMO

Although still often considered as simple unicellular organisms, in natural settings yeast cells tend to organize into intricate multicellular communities. Due to specific mechanisms only feasible at the population level, their capacity for social behavior is advantageous for their survival in a harmful environment. Feral Saccharomyces cerevisiae strains form complex structured colonies, which display many properties typical of natural biofilms causing (among others) serious infections in the human body. In our recent paper, we looked inside a growing colony using two-photon confocal microscopy. This allowed us to elucidate its three-dimensional colony architecture and some mechanisms responsible for community protection. Moreover, we showed how particular protective mechanisms complement each other during colony development and how each of them contributes to its defense against attacks from the environment. Our findings broaden current understanding of microbial multicellularity in general and also shed new light on the enormous resistance of yeast biofilms.

13.
J Cell Biol ; 194(5): 679-87, 2011 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-21875945

RESUMO

Much like other microorganisms, wild yeasts preferentially form surface-associated communities, such as biofilms and colonies, that are well protected against hostile environments and, when growing as pathogens, against the host immune system. However, the molecular mechanisms underlying the spatiotemporal development and environmental resistance of biofilms and colonies remain largely unknown. In this paper, we show that a biofilm yeast colony is a finely tuned, complex multicellular organism in which specialized cells jointly execute multiple protection strategies. These include a Pdr1p-regulated mechanism whereby multidrug resistance transporters Pdr5p and Snq2p expel external compounds solely within the surface cell layers as well as developmentally regulated production by internal cells of a selectively permeable extracellular matrix. The two mechanisms act in concert during colony development, allowing growth of new cell generations in a well-protected internal cavity of the colony. Colony architecture is strengthened by intercellular fiber connections.


Assuntos
Biofilmes/crescimento & desenvolvimento , Matriz Extracelular/fisiologia , Glicoproteínas de Membrana/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/crescimento & desenvolvimento , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Ciclo Celular/genética , Cobre/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Galactoquinase/genética , Galactoquinase/metabolismo , Galactose/metabolismo , Deleção de Genes , Proteínas de Fluorescência Verde/genética , Hidroximetilglutaril-CoA Redutases/genética , Hidroximetilglutaril-CoA Redutases/metabolismo , Glicoproteínas de Membrana/genética , Metalotioneína/genética , Metalotioneína/metabolismo , Modelos Biológicos , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Oxazinas/metabolismo , Permeabilidade , Profilinas/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...