Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 38(41): 12480-12490, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36200128

RESUMO

Cellulose nanofibers (CNFs) were used in aqueous synthesis protocols for zinc oxide (ZnO) to affect the formation of the ZnO particles. Different concentrations of CNFs were evaluated in two different synthesis protocols producing distinctly different ZnO morphologies (flowers and sea urchins) as either dominantly oxygen- or zinc-terminated particles. The CNF effects on the ZnO formation were investigated by implementing a heat-treatment method at 400 °C that fully removed the cellulose material without affecting the ZnO particles made in the presence of CNFs. The inorganic phase formations were monitored by extracting samples during the enforced precipitations to observe changes in the ZnO morphologies. A decrease in the size of the ZnO particles could be observed for all synthesis protocols, already occurring at small additions of CNFs. At as low as 0.1 g/L CNFs, the particle size decreased by 50% for the flower-shaped particles and 45% for the sea-urchin-shaped particles. The formation of smaller particles was accompanied by increased yield by 13 and 15% due to the CNFs' ability to enhance the nucleation, resulting in greater mass of ZnO divided among a larger number of particles. The enhanced nucleation could also be verified as useful for preventing secondary morphologies from forming, which grew on the firstly precipitated particles. The suppression of secondary growths' was due to the more rapid inorganic phase formation during the early phases of the reactions and the faster consumption of dissolved salts, leaving smaller amounts of metal salts present at later stages of the reactions. The findings show that using cellulose to guide inorganic nanoparticle growth can be predicted as an emerging field in the preparation of functional inorganic micro/nanoparticles. The observations are highly relevant in any industrial setting for the large-scale and resource-efficient production of ZnO.


Assuntos
Nanofibras , Óxido de Zinco , Celulose , Oxigênio , Sais , Zinco
2.
RSC Adv ; 10(8): 4698-4709, 2020 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-35495223

RESUMO

Destruction of the spherulite structure in low-density polyethylene (LDPE) is shown to result in a more insulating material at low temperatures, while the reverse effect is observed at high temperatures. On average, the change in morphology reduced the conductivity by a factor of 4, but this morphology-related decrease in conductivity was relatively small compared with the conductivity drop of more than 2 decades that was observed after slight oxidation of the LDPE (at 25 °C and 30 kV mm-1). The conductivity of LDPE was measured at different temperatures (25-60 °C) and at different electrical field strengths (3.3-30 kV mm-1) for multiple samples with a total crystalline content of 51 wt%. The transformation from a 5 µm coherent structure of spherulites in the LDPE to an evenly dispersed random lamellar phase (with retained crystallinity) was achieved by extrusion melt processing. The addition of 50 ppm commercial phenolic antioxidant to the LDPE matrix (e.g. for the long-term use of polyethylene in high voltage direct current (HVDC) cables) gave a conductivity ca. 3 times higher than that of the same material without antioxidants at 60 °C (the operating temperature for the cables). For larger amounts of antioxidant up to 1000 ppm, the DC conductivity remained stable at ca. 1 × 10-14 S m-1. Finite element modeling (FEM) simulations were carried out to model the phenomena observed, and the results suggested that the higher conductivity of the spherulite-containing LDPE stems from the displacement and increased presence of polymeric irregularities (formed during crystallization) in the border regions of the spherulite structures.

3.
ACS Omega ; 4(2): 3458-3468, 2019 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-31459561

RESUMO

Conductive natural rubber (NR) nanocomposites were prepared by solvent-casting suspensions of reduced graphene oxide (rGO) or carbon nanotubes (CNTs), followed by vulcanization of the rubber composites. Both rGO and CNT were compatible as fillers in the NR as well as having sufficient intrinsic electrical conductivity for functional applications. Physical (thermal) and chemical reduction of GO were investigated, and the results of the reductions were monitored by X-ray photoelectron spectroscopy for establishing a reduction protocol that was useful for the rGO nanocomposite preparation. Field-emission scanning electron microscopy showed that both nanofillers were adequately dispersed in the main NR phase. The CNT composite displays a marked mechanical hysteresis and higher elongation at break, in comparison to the rGO composites for an equal fraction of the carbon phase. Moreover, the composite conductivity was always ca. 3-4 orders of magnitude higher for the CNT composite than for the rGO composites, the former reaching a maximum conductivity of ca. 10.5 S/m, which was explained by the more favorable geometry of the CNT versus the rGO sheets. For low current density applications though, both composites achieved the necessary percolation and showed the electrical conductivity needed for being applied as flexible conductors for a light-emitting diode.

4.
Langmuir ; 34(17): 5079-5087, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29630844

RESUMO

A protocol for the aqueous synthesis of ca. 1-µm-long zinc oxide (ZnO) nanorods and their growth at intermediate reaction progression is presented, together with photoluminescence (PL) characteristics after heat treatment at temperatures of up to 1000 °C. The existence of solitary rods after the complete reaction (60 min) was traced back to the development of sea urchin structures during the first 5 s of the precipitation. The rods primarily formed in later stages during the reaction due to fracture, which was supported by the frequently observed broken rod ends with sharp edges in the final material, in addition to tapered uniform rod ends consistent with their natural growth direction. The more dominant rod growth in the c direction (extending the length of the rods), together with the appearance of faceted surfaces on the sides of the rods, occurred at longer reaction times (>5 min) and generated zinc-terminated particles that were more resistant to alkaline dissolution. A heat treatment for 1 h at 600 or 800 °C resulted in a smoothing of the rod surfaces, and PL measurements displayed a decreased defect emission at ca. 600 nm, which was related to the disappearance of lattice imperfections formed during the synthesis. A heat treatment at 1000 °C resulted in significant crystal growth reflected as an increase in luminescence at shorter wavelengths (ca. 510 nm). Electron microscopy revealed that the faceted rod structure was lost for ZnO rods exposed to temperatures above 600 °C, whereas even higher temperatures resulted in particle sintering and/or mass redistribution along the initially long and slender ZnO rods. The synthesized ZnO rods were a more stable Wurtzite crystal structure than previously reported ball-shaped ZnO consisting of merging sheets, which was supported by the shifts in PL spectra occurring at ca. 200 °C higher annealing temperature, in combination with a smaller thermogravimetric mass loss occurring upon heating the rods to 800 °C.


Assuntos
Temperatura Alta , Luz , Luminescência , Nanotubos/química , Óxido de Zinco/química , Animais , Cristalização , Nanotubos/ultraestrutura , Ouriços-do-Mar/anatomia & histologia
5.
Sci Rep ; 8(1): 3647, 2018 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-29483613

RESUMO

Microcapsules with specific functional properties, related to the capsule wall and core, are highly desired in a number of applications. In this study, hybrid cellulose microcapsules (1.2 ± 0.4 µm in diameter) were prepared by nanoengineering the outer walls of precursor capsules. Depending on the preparation route, capsules with different surface roughness (raspberry or broccoli-like), and thereby different wetting properties, could be obtained. The tunable surface roughness was achieved as a result of the chemical and structural properties of the outer wall of a precursor capsule, which combined with a new processing route allowed in-situ formation of silica nanoparticles (30-40 nm or 70 nm in diameter). By coating glass slides with "broccoli-like" microcapsules (30-40 nm silica nanoparticles), static contact angles above 150° and roll-off angles below 6° were obtained for both water and low surface-tension oil (hexadecane), rendering the substrate superamphiphobic. As a comparison, coatings from raspberry-like capsules were only strongly oleophobic and hydrophobic. The liquid-core of the capsules opens great opportunities to incorporate different functionalities and here hydrophobic superparamagnetic nanoparticles (SPIONs) were encapsulated. As a result, magnetic broccoli-like microcapsules formed an excellent superamphiphobic coating-layer on a curved geometry by simply applying an external magnetic field.

6.
Langmuir ; 32(42): 11002-11013, 2016 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-27689906

RESUMO

Controlled aqueous growth of 1 µm flower-shaped ZnO particles with a hierarchical subset of exposed nanosheets represented by {21̅0} crystal faces, followed by annealing at temperatures up to 1000 °C, is presented. The flower-shaped particles showed superior photocatalytic performance compared to the crystal faces of 20 nm ZnO nanoparticles. The photocatalytic reaction rate of the flower-shaped particles before annealing was 2.4 times higher per m2 compared with that of the nanoparticles with double specific surface area. Crystal surface defects and nanosized pores within the flower-shaped particles were revealed by porosity measurements and electron microscopy. A heat treatment at 400 °C was found to be optimal for removal of nanoporosity/surface defects and impurities while retaining the hierarchical superstructure. The heat treatment resulted in a photodegradation efficiency that increased by an additional 43%, although the specific surface area decreased from 16.7 to 13.0 m2g-1. The enhanced photocatalytic effect remained intact under both acidic and alkaline environments owing to the {21̅0} crystal surfaces, which were less prone to dissolution than the nanoparticles. The photocatalytic performance relied on primarily three factors: the removal of surface impurities, the oxygen termination of the {21̅0} crystal faces, and the promotion of charge carrier lifetime by removal of lattice defects acting as recombination centers. The synthesis presented is an entirely hydrocarbon- and surfactant-free ("green") preparation scheme, and the formation of the flower-shaped particles was favored solely by optimization of the reaction temperature after the correct nitrate salt precursor concentrations had been established.

7.
ACS Appl Mater Interfaces ; 6(22): 20524-34, 2014 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-25331121

RESUMO

A major limitation in the development of highly functional hybrid nanocomposites is brittleness and low tensile strength at high inorganic nanoparticle content. Herein, cellulose nanofibers were extracted from wood and individually decorated with cobalt-ferrite nanoparticles and then for the first time molded at low temperature (<120 °C) into magnetic nanocomposites with up to 93 wt % inorganic content. The material structure was characterized by TEM and FE-SEM and mechanically tested as compression molded samples. The obtained porous magnetic sheets were further impregnated with a thermosetting epoxy resin, which improved the load-bearing functions of ferrite and cellulose material. A nanocomposite with 70 wt % ferrite, 20 wt % cellulose nanofibers, and 10 wt % epoxy showed a modulus of 12.6 GPa, a tensile strength of 97 MPa, and a strain at failure of ca. 4%. Magnetic characterization was performed in a vibrating sample magnetometer, which showed that the coercivity was unaffected and that the saturation magnetization was in proportion with the ferrite content. The used ferrite, CoFe2O4, is a magnetically hard material, demonstrated by that the composite material behaved as a traditional permanent magnet. The presented processing route is easily adaptable to prepare millimeter-thick and moldable magnetic objects. This suggests that the processing method has the potential to be scaled-up for industrial use for the preparation of a new subcategory of magnetic, low-cost, and moldable objects based on cellulose nanofibers.

8.
Sci Rep ; 4: 6335, 2014 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-25208692

RESUMO

A missing cornerstone in the development of tough micro/nano fibre systems is an understanding of the fibre failure mechanisms, which stems from the limitation in observing the fracture of objects with dimensions one hundredth of the width of a hair strand. Tensile testing in the electron microscope is herein adopted to reveal the fracture behaviour of a novel type of toughened electrospun poly(methyl methacrylate)/poly(ethylene oxide) fibre mats for biomedical applications. These fibres showed a toughness more than two orders of magnitude greater than that of pristine PMMA fibres. The in-situ microscopy revealed that the toughness were not only dependent on the initial molecular alignment after spinning, but also on the polymer formulation that could promote further molecular orientation during the formation of micro/nano-necking. The true fibre strength was greater than 150 MPa, which was considerably higher than that of the unmodified PMMA (17 MPa). This necking phenomenon was prohibited by high aspect ratio cellulose nanocrystal fillers in the ultra-tough fibres, leading to a decrease in toughness by more than one order of magnitude. The reported necking mechanism may have broad implications also within more traditional melt-spinning research.

9.
Nanotechnology ; 23(14): 145601, 2012 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-22433909

RESUMO

Magnetite nanoparticles have been prepared by co-precipitation using a custom-designed jet mixer to achieve rapid mixing (RM) of reactants in a timescale of milliseconds. The quick and stable nucleation obtained allows control of the particle size and size distribution via a more defined growth process. Nanoparticles of different sizes were prepared by controlling the processing temperature in the first few seconds post-mixing. The average size of the nanoparticles investigated using a Tecnai transmission electron microscope is found to increase with the temperature from 3.8 nm at 1 ± 1 °C to 10.9 nm for particles grown at 95 ± 1 °C. The temperature dependence of the size distribution follows the same trend and is explained in terms of Ostwald ripening of the magnetite nanoparticles during the co-precipitation of Fe(2+) and Fe(3+). The magnetic properties were studied by monitoring the blocking temperature via both DC and AC techniques. Strikingly, the obtained RM particles maintain the high magnetization (as high as ∼88 A m(2) kg(-1) at 500 kA m(-1)) while the coercivity is as low as ∼12 A m(-1) with the expected temperature dependence. Besides, by adding a drop of tetramethylammonium hydroxide, aqueous ferrofluids with long term stability are obtained, suggesting their suitability for applications in ferrofluid technology and biomedicine.


Assuntos
Nanopartículas de Magnetita/química , Tamanho da Partícula , Cristalização , Compostos Férricos/química , Compostos Ferrosos/química , Hipertermia Induzida , Nanopartículas de Magnetita/ultraestrutura , Microscopia Eletrônica de Transmissão , Nanotecnologia/métodos , Compostos de Amônio Quaternário/química , Temperatura , Água/química , Difração de Raios X
10.
Rev Sci Instrum ; 79(2 Pt 1): 025109, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18315331

RESUMO

A simple versatile desktop instrument for the measurement of Faraday rotation in the ultraviolet range has been designed and constructed. A high pressure short arc mercury lamp is used for the light source. By using interference filter for mercury, the desired wavelength of the available lines for mercury (e.g., 365, 405, and 436 nm) is selected. Our instrument measures hysteresis loops in magnetic fields up to 900 kAm within a few minutes. With a light beam intensity monitor, the detrimental effect from fluctuations in the light source has been virtually eliminated. The instrument can operate at photocurrents from the picoampere regime and above with a Faraday rotation sensitivity of around 1 millideg. By incorporating a higher order Taylor expansion approach, we improve the linearity of the Faraday rotation to transmitted light relationship by two orders of magnitude. The electronics is custom designed analog type, rendering relaxed dynamic requirements for the analog-to-digital converter. The design is fully protected from ambient light which makes operation with the equipment in darkness superfluous; neither does it need any optical table. The data acquisition and operation of the instrument are fully supported by a LABVIEW program. Measurements on a magnetite thin film and on microscope cover glass are given as examples for the performance and sensitivity of the equipment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...