Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
R Soc Open Sci ; 11(2): 231671, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38384778

RESUMO

The spotted lanternfly is an emerging global invasive insect pest. Due to a lack of natural enemies where it is invasive, human intervention is required. Extensive management has been applied but the spread continues. Recently, the idea of bird-based biological controls has re-emerged and shown effective in studies. However, it is questionable, if birds are able to effectively control unfamiliar and occasionally toxic invasive pests in short timeframes. Unless, perhaps, the birds are effective social learners and toxicity of the invaders is rare. Here, we introduce a mathematical model for social learning in a great tit-like bird to investigate conditions for the emergence of a collective biological control of a pest that is occasionally toxic, like the lanternfly. We find that the social observation rate relative to the proportion of toxic lanternfly dictate when collective biological controls will emerge. We also implement the social learning model into a model of collective motion in bird-like animals, and find that it produces results consistent with the mathematical model. Our work suggests that social birds may be useful in managing the spotted lanternfly, and that removing the toxicity-inducing preferred host of the lanternfly should be a priority to facilitate this.

2.
Sci Rep ; 13(1): 22600, 2023 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-38114694

RESUMO

Many models developed to forecast and attempt to understand the COVID-19 pandemic are highly complex, and few take collective behavior into account. As the pandemic progressed individual recurrent infection was observed and simpler susceptible-infected type models were introduced. However, these do not include mechanisms to model collective behavior. Here, we introduce an extension of the SIS model that accounts for collective behavior and show that it has four equilibria. Two of the equilibria are the standard SIS model equilibria, a third is always unstable, and a fourth where collective behavior and infection prevalence interact to produce either node-like or oscillatory dynamics. We then parameterized the model using estimates of the transmission and recovery rates for COVID-19 and present phase diagrams for fixed recovery rate and free transmission rate, and both rates fixed. We observe that regions of oscillatory dynamics exist in both cases and that the collective behavior parameter regulates their extent. Finally, we show that the system exhibits hysteresis when the collective behavior parameter varies over time. This model provides a minimal framework for explaining oscillatory phenomena such as recurring waves of infection and hysteresis effects observed in COVID-19, and other SIS-type epidemics, in terms of collective behavior.


Assuntos
COVID-19 , Doenças Transmissíveis , Humanos , Doenças Transmissíveis/epidemiologia , Pandemias , COVID-19/epidemiologia , Suscetibilidade a Doenças/epidemiologia , Previsões
3.
Math Biosci ; 340: 108670, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34302819

RESUMO

The spotted lanternfly (SLF) is an invasive pest that emerged in the US less than a decade ago. With few natural enemies and an ability to feed on a wide variety of readily available plants the population has grown rapidly. It is causing damage to a wide range of natural and economically important farmed plants and at present there is no known way to stop the growth and spread of the population. However, a number of control measures have been proposed to limit the growth and the effectiveness of some of these have been assessed via empirical studies. Studies to estimate the natural mortality rate of the lanternfly's different life stages and other properties of its life cycle are also available. However, no attempt to integrate this empirical information to estimate population level characteristics such as the population growth rate and the potential effects of proposed control measures can be found in the literature. Here, we introduce a simple population dynamics model parameterized using available information in the literature to obtain estimates of this type. Our model suggests that the annual growth rate of the SLF population in the US is 5.47, that only three out of six proposed control measures considered here have the potential to decrease the population even if we can find and treat each SLF in every stage, and that even with a combined strategy involving the most effective proposed control measures about 35% of all SLF in the relevant stages must be found and treated to turn the current population growth into decline. Suggesting that eradication of the spotted lanternfly over larger geographical areas in the US will be challenging, and we believe that the modeling framework presented here may be useful in providing estimates to inform feasibility assessment of proposed management efforts.


Assuntos
Hemípteros , Espécies Introduzidas , Estágios do Ciclo de Vida , Modelos Biológicos , Controle de Pragas , Animais , Hemípteros/fisiologia , Espécies Introduzidas/estatística & dados numéricos , Controle de Pragas/métodos , Plantas/parasitologia , Dinâmica Populacional , Crescimento Demográfico
4.
R Soc Open Sci ; 6(4): 190381, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31183154

RESUMO

Animal groups frequently move in a highly organized manner, as represented by flocks of birds and schools of fish. Despite being an everyday occurrence, we do not fully understand how this works. In particular, what social interactions between animals give rise to the flock structures we observe? This question is often investigated using self-propelled particle models where particles represent the individual animals. These models differ in the social interactions used, individual particle properties, and various technical assumptions. One particular technical assumption relates to whether all particles update their headings and positions at exactly the same time (synchronous update) or not (asynchronous update). Here, we investigate the causal effects of this assumption in an attraction-only model and find that it has a dramatic impact. Polarized groups do not form when synchronous update is used, but are produced with asynchronous update, and this phenomenon is robust with respect to variation in particle displacements and inclusion of noise. Given that many important models have been implemented with synchronous update only, we speculate that our understanding of the social interactions on which they are based may be incomplete. Perhaps previously unobserved phenomena will emerge if other potentially more realistic update schemes are used.

5.
PLoS Comput Biol ; 14(10): e1006523, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30307942

RESUMO

Ants, termites and humans often form well-organized and highly efficient trails between different locations. Yet the microscopic traffic rules responsible for this organization and efficiency are not fully understood. In previous experimental studies with leaf-cutting ants (Atta colombica), a set of local priority rules were isolated and it was proposed that these rules govern the temporal and spatial organization of the traffic on the trails. Here we introduce a model based on these priority rules to investigate whether they are sufficient to produce traffic similar to that observed in the experiments on both a narrow and a wider trail. We establish that the model is able to reproduce key characteristics of the traffic on the trails. In particular, we show that the proposed priority rules induce de-synchronization into clusters of inbound and outbound ants on a narrow trail, and that priority-type dependent segregated traffic emerges on a wider trail. Due to the generic nature of the proposed priority rules we speculate that they may be used to model traffic organization in a variety of other ant species.


Assuntos
Formigas/fisiologia , Comportamento Apetitivo/fisiologia , Comportamento Social , Comportamento Espacial/fisiologia , Animais , Biologia Computacional , Modelos Teóricos
6.
Front Robot AI ; 5: 48, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-33500933

RESUMO

Animals as diverse as ants and humans are faced with the tasks of collecting, transporting or herding objects. Sheepdogs do this daily when they collect, herd, and maneuver flocks of sheep. Here, we adapt a shepherding algorithm inspired by sheepdogs to collect and transport objects using a robot. Our approach produces an effective robot collection process that autonomously adapts to changing environmental conditions and is robust to noise from various sources. We suggest that this biomimetic process could be implemented into suitable robots to perform collection and transport tasks that might include - for example - cleaning up objects in the environment, keeping animals away from sensitive areas or collecting and herding animals to a specific location. Furthermore, the feedback controlled interactions between the robot and objects which we study can be used to interrogate and understand the local and global interactions of real animal groups, thus offering a novel methodology of value to researchers studying collective animal behavior.

8.
Proc Biol Sci ; 283(1842)2016 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-27807269

RESUMO

We present evidence of a novel form of group hunting. Individual sailfish (Istiophorus platypterus) alternate attacks with other group members on their schooling prey (Sardinella aurita). While only 24% of attacks result in prey capture, multiple prey are injured in 95% of attacks, resulting in an increase of injured fish in the school with the number of attacks. How quickly prey are captured is positively correlated with the level of injury of the school, suggesting that hunters can benefit from other conspecifics' attacks on the prey. To explore this, we built a mathematical model capturing the dynamics of the hunt. We show that group hunting provides major efficiency gains (prey caught per unit time) for individuals in groups of up to 70 members. We also demonstrate that a free riding strategy, where some individuals wait until the prey are sufficiently injured before attacking, is only beneficial if the cost of attacking is high, and only then when waiting times are short. Our findings provide evidence that cooperative benefits can be realized through the facilitative effects of individuals' hunting actions without spatial coordination of attacks. Such 'proto-cooperation' may be the pre-cursor to more complex group-hunting strategies.


Assuntos
Comportamento Cooperativo , Perciformes/fisiologia , Comportamento Predatório , Animais , Peixes
9.
PLoS One ; 10(3): e0117612, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25760635

RESUMO

In a situation with a limited common resource, cooperation between individuals sharing the resource is essential. However, people often act upon self-interest in irrational ways that threaten the long-term survival of the whole group. A lack of sustainable or environmentally responsible behavior is often observed. In this study, we examine how the maximization of benefits principle works in a wider social interactive context of personality preferences in order to gain a more realistic insight into the evolution of cooperation. We used time perspective (TP), a concept reflecting individual differences in orientation towards past, present, or future, and relevant for making sustainable choices. We developed a personality-driven agent-based model that explores the role of personality in the outcomes of social dilemmas and includes multiple facets of diversity: (1) The agents have different behavior strategies: individual differences derived by applying cluster analysis to survey data from 22 countries (N = 10,940) and resulting in 7 cross-cultural profiles of TP; (2) The non-uniform distribution of the types of agents across countries; (3) The diverse interactions between the agents; and (4) diverse responses to those interactions in a well-mixed population. As one of the results, we introduced an index of overall cooperation for each of the 22 countries, which was validated against cultural, economic, and sustainability indicators (HDI, dimensions of national culture, and Environment Performance Index). It was associated with higher human development, higher individualism, lower power distance, and better environmental performance. The findings illustrate how individual differences in TP can be simulated to predict the ways people in different countries solve the personal vs. common gain dilemma in the global limited-resource situation. This interdisciplinary approach to social simulation can be adopted to explain the possible causes of global environmental issues and to predict their possible outcomes.


Assuntos
Relações Interpessoais , Análise por Conglomerados , Recursos em Saúde , Humanos , Modelos Teóricos , Meio Social
10.
J R Soc Interface ; 11(100): 20140719, 2014 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-25165603

RESUMO

Herding of sheep by dogs is a powerful example of one individual causing many unwilling individuals to move in the same direction. Similar phenomena are central to crowd control, cleaning the environment and other engineering problems. Despite single dogs solving this 'shepherding problem' every day, it remains unknown which algorithm they employ or whether a general algorithm exists for shepherding. Here, we demonstrate such an algorithm, based on adaptive switching between collecting the agents when they are too dispersed and driving them once they are aggregated. Our algorithm reproduces key features of empirical data collected from sheep-dog interactions and suggests new ways in which robots can be designed to influence movements of living and artificial agents.


Assuntos
Algoritmos , Comportamento Animal/fisiologia , Modelos Biológicos , Animais , Cães , Ovinos
11.
PLoS Comput Biol ; 9(3): e1002961, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23555206

RESUMO

Inference of interaction rules of animals moving in groups usually relies on an analysis of large scale system behaviour. Models are tuned through repeated simulation until they match the observed behaviour. More recent work has used the fine scale motions of animals to validate and fit the rules of interaction of animals in groups. Here, we use a Bayesian methodology to compare a variety of models to the collective motion of glass prawns (Paratya australiensis). We show that these exhibit a stereotypical 'phase transition', whereby an increase in density leads to the onset of collective motion in one direction. We fit models to this data, which range from: a mean-field model where all prawns interact globally; to a spatial Markovian model where prawns are self-propelled particles influenced only by the current positions and directions of their neighbours; up to non-Markovian models where prawns have 'memory' of previous interactions, integrating their experiences over time when deciding to change behaviour. We show that the mean-field model fits the large scale behaviour of the system, but does not capture the observed locality of interactions. Traditional self-propelled particle models fail to capture the fine scale dynamics of the system. The most sophisticated model, the non-Markovian model, provides a good match to the data at both the fine scale and in terms of reproducing global dynamics, while maintaining a biologically plausible perceptual range. We conclude that prawns' movements are influenced by not just the current direction of nearby conspecifics, but also those encountered in the recent past. Given the simplicity of prawns as a study system our research suggests that self-propelled particle models of collective motion should, if they are to be realistic at multiple biological scales, include memory of previous interactions and other non-Markovian effects.


Assuntos
Teorema de Bayes , Comportamento Animal/fisiologia , Modelos Biológicos , Animais , Biologia Computacional/métodos , Simulação por Computador , Decápodes/fisiologia , Comportamento Social , Comportamento Espacial/fisiologia
12.
PLoS Comput Biol ; 8(1): e1002308, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22241970

RESUMO

Inference of interaction rules of animals moving in groups usually relies on an analysis of large scale system behaviour. Models are tuned through repeated simulation until they match the observed behaviour. More recent work has used the fine scale motions of animals to validate and fit the rules of interaction of animals in groups. Here, we use a Bayesian methodology to compare a variety of models to the collective motion of glass prawns (Paratya australiensis). We show that these exhibit a stereotypical 'phase transition', whereby an increase in density leads to the onset of collective motion in one direction. We fit models to this data, which range from: a mean-field model where all prawns interact globally; to a spatial Markovian model where prawns are self-propelled particles influenced only by the current positions and directions of their neighbours; up to non-Markovian models where prawns have 'memory' of previous interactions, integrating their experiences over time when deciding to change behaviour. We show that the mean-field model fits the large scale behaviour of the system, but does not capture fine scale rules of interaction, which are primarily mediated by physical contact. Conversely, the Markovian self-propelled particle model captures the fine scale rules of interaction but fails to reproduce global dynamics. The most sophisticated model, the non-Markovian model, provides a good match to the data at both the fine scale and in terms of reproducing global dynamics. We conclude that prawns' movements are influenced by not just the current direction of nearby conspecifics, but also those encountered in the recent past. Given the simplicity of prawns as a study system our research suggests that self-propelled particle models of collective motion should, if they are to be realistic at multiple biological scales, include memory of previous interactions and other non-Markovian effects.


Assuntos
Teorema de Bayes , Comportamento Animal/fisiologia , Processos Grupais , Modelos Biológicos , Palaemonidae/fisiologia , Comportamento Social , Comportamento Espacial/fisiologia , Animais , Simulação por Computador , Modelos Estatísticos
13.
J Theor Biol ; 283(1): 145-51, 2011 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-21620861

RESUMO

Many animal groups, for example schools of fish or flocks of birds, exhibit complex dynamic patterns while moving cohesively in the same direction. These flocking patterns have been studied using self-propelled particle models, most of which assume that collective motion arises from individuals aligning with their neighbours. Here, we propose a self-propelled particle model in which the only social force between individuals is attraction. We show that this model generates three different phases: swarms, undirected mills and moving aligned groups. By studying our model in the zero noise limit, we show how these phases depend on the relative strength of attraction and individual inertia. Moreover, by restricting the field of vision of the individuals and increasing the degree of noise in the system, we find that the groups generate both directed mills and three dynamically moving, 'rotating chain' structures. A rich diversity of patterns is generated by social attraction alone, which may provide insight into the dynamics of natural flocks.


Assuntos
Comportamento Animal/fisiologia , Comportamento Cooperativo , Modelos Biológicos , Movimento/fisiologia , Comunicação Animal , Animais , Processos Grupais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...