Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Chem Neurosci ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38953493

RESUMO

Polychlorinated biphenyls (PCBs) are industrial chemicals that are ubiquitously found in the environment. Exposure to these compounds has been associated with neurotoxic outcomes; however, the underlying mechanisms for such outcomes remain to be fully understood. Recent studies have shown that astrocytes, the most abundant glial cell type in the brain, are susceptible to PCB exposure as well as exposure to human-relevant metabolites of PCBs. Astrocytes are critical for maintaining healthy brain function due to their unique functional attributes and positioning within the neuronal networks in the brain. In this study, we assessed the toxicity of PCB52, one of the most abundantly found PCB congeners in outdoor and indoor air, and two of its human-relevant metabolites, on astrocyte mitochondria. We exposed C6 cells, an astrocyte cell line, to PCB52 or its human-relevant metabolites and found that all the compounds showed increased toxicity in galactose-containing media compared to that in the glucose-containing media, indicating the involvement of mitochondria in observed toxicity. Additionally, we also found increased oxidative stress upon exposure to PCB52 metabolites. All three compounds caused a loss of mitochondrial membrane potential, distinct changes in the mitochondrial structure, and impaired mitochondrial function. The hydroxylated metabolite 4-OH-PCB52 likely functions as an uncoupler of mitochondria. This is the first study to report the adverse effects of exposure to PCB52 and its human-relevant metabolites on the mitochondrial structure and function in astrocytes.

2.
Cerebellum ; 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38735882

RESUMO

Autosomal-recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) is caused by loss-of-function mutation in the SACS gene, which encodes sacsin, a putative HSP70-HSP90 co-chaperone. Previous studies with Sacs knock-out (KO) mice and patient-derived fibroblasts suggested that SACSIN mutations inhibit the function of the mitochondrial fission enzyme dynamin-related protein 1 (Drp1). This in turn resulted in mitochondrial hyperfusion and dysfunction. We experimentally tested this hypothesis by genetically manipulating the mitochondrial fission/fusion equilibrium, creating double KO (DKO) mice that also lack positive (PP2A/Bß2) and negative (PKA/AKAP1) regulators of Drp1. Neither promoting mitochondrial fusion (Bß2 KO) nor fission (Akap1 KO) influenced progression of motor symptoms in Sacs KO mice. However, our studies identified profound learning and memory deficits in aged Sacs KO mice. Moreover, this cognitive impairment was rescued in a gene dose-dependent manner by deletion of the Drp1 inhibitor PKA/Akap1. Our results are inconsistent with mitochondrial dysfunction as a primary pathogenic mechanism in ARSACS. Instead, they imply that promoting mitochondrial fission may be beneficial at later stages of the disease when pathology extends to brain regions subserving learning and memory.

3.
Res Sq ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38659734

RESUMO

Autosomal-recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) is caused by loss-of-function mutation in the SACS gene, which encodes sacsin, a putative HSP70-HSP90 co-chaperone. Previous studies with Sacs knock-out (KO) mice and patient-derived fibroblasts suggested that SACSIN mutations inhibit the function of the mitochondrial fission enzyme dynamin-related protein 1 (Drp1). This in turn resulted in mitochondrial hyperfusion and dysfunction. We experimentally tested this hypothesis by genetically manipulating the mitochondrial fission/fusion equilibrium, creating double KO (DKO) mice that also lack positive (PP2A/Bß2) and negative (PKA/AKAP1) regulators of Drp1. Neither promoting mitochondrial fusion (Bß2 KO) nor fission (Akap1 KO) influenced progression of motor symptoms in Sacs KO mice. However, our studies identified profound learning and memory deficits in aged Sacs KO mice. Moreover, this cognitive impairment was rescued in a gene dose-dependent manner by deletion of the Drp1 inhibitor PKA/Akap1. Our results are inconsistent with mitochondrial dysfunction as a primary pathogenic mechanism in ARSACS. Instead, they imply that promoting mitochondrial fission may be beneficial at later stages of the disease when pathology extends to brain regions subserving learning and memory.

4.
J Neurodev Disord ; 16(1): 9, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38481146

RESUMO

Cyclic adenosine 3', 5' monophosphate (cAMP)-dependent Protein Kinase A (PKA) is a multi-functional serine/threonine kinase that regulates a wide variety of physiological processes including gene transcription, metabolism, and synaptic plasticity. Genomic sequencing studies have identified both germline and somatic variants of the catalytic and regulatory subunits of PKA in patients with metabolic and neurodevelopmental disorders. In this review we discuss the classical cAMP/PKA signaling pathway and the disease phenotypes that result from PKA variants. This review highlights distinct isoform-specific cognitive deficits that occur in both PKA catalytic and regulatory subunits, and how tissue-specific distribution of these isoforms may contribute to neurodevelopmental disorders in comparison to more generalized endocrine dysfunction.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico , Doenças do Sistema Nervoso , Humanos , Proteínas Quinases Dependentes de AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Fosforilação , Transdução de Sinais
5.
Mol Cell ; 84(8): 1570-1584.e7, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38537638

RESUMO

Spatiotemporal regulation of intracellular signaling molecules, such as the 3',5'-cyclic adenosine monophosphate (cAMP)-dependent protein kinase (PKA), ensures proper cellular function. Liquid-liquid phase separation (LLPS) of the ubiquitous PKA regulatory subunit RIα promotes cAMP compartmentation and signaling specificity. However, the molecular determinants of RIα LLPS remain unclear. Here, we reveal that two separate dimerization interfaces, combined with the cAMP-induced unleashing of the PKA catalytic subunit (PKA-C) from the pseudosubstrate inhibitory sequence, drive RIα condensate formation in the cytosol of mammalian cells, which is antagonized by docking to A-kinase anchoring proteins. Strikingly, we find that the RIα pseudosubstrate region is critically involved in forming a non-canonical R:C complex, which recruits active PKA-C to RIα condensates to maintain low basal PKA activity in the cytosol. Our results suggest that RIα LLPS not only facilitates cAMP compartmentation but also spatially restrains active PKA-C, thus highlighting the functional versatility of biomolecular condensates in driving signaling specificity.


Assuntos
Subunidade RIalfa da Proteína Quinase Dependente de AMP Cíclico , Separação de Fases , Animais , Subunidade RIalfa da Proteína Quinase Dependente de AMP Cíclico/genética , Subunidade RIalfa da Proteína Quinase Dependente de AMP Cíclico/química , Subunidade RIalfa da Proteína Quinase Dependente de AMP Cíclico/metabolismo , Transdução de Sinais , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Mamíferos/metabolismo
6.
Proc Natl Acad Sci U S A ; 121(1): e2310727120, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38150499

RESUMO

Intrinsically disordered regions (IDR) and short linear motifs (SLiMs) play pivotal roles in the intricate signaling networks governed by phosphatases and kinases. B56δ (encoded by PPP2R5D) is a regulatory subunit of protein phosphatase 2A (PP2A) with long IDRs that harbor a substrate-mimicking SLiM and multiple phosphorylation sites. De novo missense mutations in PPP2R5D cause intellectual disabilities (ID), macrocephaly, Parkinsonism, and a broad range of neurological symptoms. Our single-particle cryo-EM structures of the PP2A-B56δ holoenzyme reveal that the long, disordered arms at the B56δ termini fold against each other and the holoenzyme core. This architecture suppresses both the phosphatase active site and the substrate-binding protein groove, thereby stabilizing the enzyme in a closed latent form with dual autoinhibition. The resulting interface spans over 190 Šand harbors unfavorable contacts, activation phosphorylation sites, and nearly all residues with ID-associated mutations. Our studies suggest that this dynamic interface is coupled to an allosteric network responsive to phosphorylation and altered globally by mutations. Furthermore, we found that ID mutations increase the holoenzyme activity and perturb the phosphorylation rates, and the severe variants significantly increase the mitotic duration and error rates compared to the normal variant.


Assuntos
Proteína Fosfatase 2 , Proteína Fosfatase 2/metabolismo , Jordânia , Fosforilação , Mutação , Holoenzimas/genética , Holoenzimas/metabolismo
7.
Cells ; 12(11)2023 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-37296658

RESUMO

A-Kinase anchoring protein 1 (AKAP1) is a multifunctional mitochondrial scaffold protein that regulates mitochondrial dynamics, bioenergetics, and calcium homeostasis by anchoring several proteins, including protein kinase A, to the outer mitochondrial membrane. Glaucoma is a complex, multifactorial disease characterized by a slow and progressive degeneration of the optic nerve and retinal ganglion cells (RGCs), ultimately resulting in vision loss. Impairment of the mitochondrial network and function is linked to glaucomatous neurodegeneration. Loss of AKAP1 induces dynamin-related protein 1 dephosphorylation-mediated mitochondrial fragmentation and loss of RGCs. Elevated intraocular pressure triggers a significant reduction in AKAP1 protein expression in the glaucomatous retina. Amplification of AKAP1 expression protects RGCs from oxidative stress. Hence, modulation of AKAP1 could be considered a potential therapeutic target for neuroprotective intervention in glaucoma and other mitochondria-associated optic neuropathies. This review covers the current research on the role of AKAP1 in the maintenance of mitochondrial dynamics, bioenergetics, and mitophagy in RGCs and provides a scientific basis to identify and develop new therapeutic strategies that could protect RGCs and their axons in glaucoma.


Assuntos
Glaucoma , Células Ganglionares da Retina , Humanos , Células Ganglionares da Retina/metabolismo , Proteínas de Ancoragem à Quinase A/metabolismo , Neuroproteção , Glaucoma/metabolismo , Retina/metabolismo
8.
Front Endocrinol (Lausanne) ; 14: 1187216, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37305047

RESUMO

Introduction: With technical advances, confocal and super-resolution microscopy have become powerful tools to dissect cellular pathophysiology. Cell attachment to glass surfaces compatible with advanced imaging is critical prerequisite but remains a considerable challenge for human beta cells. Recently, Phelps et al. reported that human beta cells plated on type IV collagen (Col IV) and cultured in neuronal medium preserve beta cell characteristics. Methods: We examined human islet cells plated on two commercial sources of Col IV (C6745 and C5533) and type V collagen (Col V) for differences in cell morphology by confocal microscopy and secretory function by glucose-stimulated insulin secretion (GSIS). Collagens were authenticated by mass spectrometry and fluorescent collagen-binding adhesion protein CNA35. Results: All three preparations allowed attachment of beta cells with high nuclear localization of NKX6.1, indicating a well-differentiated status. All collagen preparations supported robust GSIS. However, the morphology of islet cells differed between the 3 preparations. C5533 showed preferable features as an imaging platform with the greatest cell spread and limited stacking of cells followed by Col V and C6745. A significant difference in attachment behavior of C6745 was attributed to the low collagen contents of this preparation indicating importance of authentication of coating material. Human islet cells plated on C5533 showed dynamic changes in mitochondria and lipid droplets (LDs) in response to an uncoupling agent 2-[2-[4-(trifluoromethoxy)phenyl]hydrazinylidene]-propanedinitrile (FCCP) or high glucose + oleic acid. Discussion: An authenticated preparation of Col IV provides a simple platform to apply advanced imaging for studies of human islet cell function and morphology.


Assuntos
Placas Ósseas , Colágeno , Humanos , Microscopia Confocal , Colágeno Tipo V , Glucose/farmacologia
9.
bioRxiv ; 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-37066309

RESUMO

An increasing number of mutations associated with devastating human diseases are diagnosed by whole-genome/exon sequencing. Recurrent de novo missense mutations have been discovered in B56δ (encoded by PPP2R5D), a regulatory subunit of protein phosphatase 2A (PP2A), that cause intellectual disabilities (ID), macrocephaly, Parkinsonism, and a broad range of neurological symptoms. Single-particle cryo-EM structures show that the PP2A-B56δ holoenzyme possesses closed latent and open active forms. In the closed form, the long, disordered arms of B56δ termini fold against each other and the holoenzyme core, establishing dual autoinhibition of the phosphatase active site and the substrate-binding protein groove. The resulting interface spans over 190 Šand harbors unfavorable contacts, activation phosphorylation sites, and nearly all residues with ID-associated mutations. Our studies suggest that this dynamic interface is close to an allosteric network responsive to activation phosphorylation and altered globally by mutations. Furthermore, we found that ID mutations perturb the activation phosphorylation rates, and the severe variants significantly increase the mitotic duration and error rates compared to the wild variant.

10.
Mol Metab ; 67: 101654, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36513220

RESUMO

OBJECTIVE: The essential role of mitochondria in regulation of metabolic function and other physiological processes has garnered enormous interest in understanding the mechanisms controlling the function of this organelle. We assessed the role of the BBSome, a protein complex composed of eight Bardet-Biedl syndrome (BBS) proteins, in the control of mitochondria dynamic and function. METHODS: We used a multidisciplinary approach that include CRISPR/Cas9 technology-mediated generation of a stable Bbs1 gene knockout hypothalamic N39 neuronal cell line. We also analyzed the phenotype of BBSome deficient mice in presence or absence of the gene encoding A-kinase anchoring protein 1 (AKAP1). RESULTS: Our data show that the BBSome play an important role in the regulation of mitochondria dynamics and function. Disruption of the BBSome cause mitochondria hyperfusion in cell lines, fibroblasts derived from patients as well as in hypothalamic neurons and brown adipocytes of mice. The morphological changes in mitochondria translate into functional abnormalities as indicated by the reduced oxygen consumption rate and altered mitochondrial distribution and calcium handling. Mechanistically, we demonstrate that the BBSome modulates the activity of dynamin-like protein 1 (DRP1), a key regulator of mitochondrial fission, by regulating its phosphorylation and translocation to the mitochondria. Notably, rescuing the decrease in DRP1 activity through deletion of one copy of the gene encoding AKAP1 was effective to normalize the defects in mitochondrial morphology and activity induced by BBSome deficiency. Importantly, this was associated with improvement in several of the phenotypes caused by loss of the BBSome such as the neuroanatomical abnormalities, metabolic alterations and obesity highlighting the importance of mitochondria defects in the pathophysiology of BBS. CONCLUSIONS: These findings demonstrate a critical role of the BBSome in the modulation of mitochondria function and point to mitochondrial defects as a key disease mechanism in BBS.


Assuntos
Síndrome de Bardet-Biedl , Camundongos , Animais , Síndrome de Bardet-Biedl/genética , Síndrome de Bardet-Biedl/metabolismo , Obesidade/metabolismo , Proteínas , Linhagem Celular , Mitocôndrias/metabolismo
11.
bioRxiv ; 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38168176

RESUMO

Spatiotemporal regulation of intracellular signaling molecules, such as the 3',5'-cyclic adenosine monophosphate (cAMP)-dependent protein kinase (PKA), ensures the specific execution of various cellular functions. Liquid-liquid phase separation (LLPS) of the ubiquitously expressed PKA regulatory subunit RIα was recently identified as a major driver of cAMP compartmentation and signaling specificity. However, the molecular determinants of RIα LLPS remain unclear. Here, we reveal that two separate dimerization interfaces combined with the cAMP-induced release of the PKA catalytic subunit (PKA-C) from the pseudosubstrate inhibitory sequence are required to drive RIα condensate formation in cytosol, which is antagonized by docking to A-kinase anchoring proteins. Strikingly, we find that the RIα pseudosubstrate region is critically involved in the formation of a non-canonical R:C complex, which serves to maintain low basal PKA activity in the cytosol by enabling the recruitment of active PKA-C to RIα condensates. Our results suggest that RIα LLPS not only facilitates cAMP compartmentation but also spatially restrains active PKA-C, thus highlighting the functional versatility of biomolecular condensates in driving signaling specificity.

12.
Elife ; 112022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-35924897

RESUMO

Protein phosphatase 2A (PP2A) holoenzymes target broad substrates by recognizing short motifs via regulatory subunits. PP2A methylesterase 1 (PME-1) is a cancer-promoting enzyme and undergoes methylesterase activation upon binding to the PP2A core enzyme. Here, we showed that PME-1 readily demethylates different families of PP2A holoenzymes and blocks substrate recognition in vitro. The high-resolution cryoelectron microscopy structure of a PP2A-B56 holoenzyme-PME-1 complex reveals that PME-1 disordered regions, including a substrate-mimicking motif, tether to the B56 regulatory subunit at remote sites. They occupy the holoenzyme substrate-binding groove and allow large structural shifts in both holoenzyme and PME-1 to enable multipartite contacts at structured cores to activate the methylesterase. B56 interface mutations selectively block PME-1 activity toward PP2A-B56 holoenzymes and affect the methylation of a fraction of total cellular PP2A. The B56 interface mutations allow us to uncover B56-specific PME-1 functions in p53 signaling. Our studies reveal multiple mechanisms of PME-1 in suppressing holoenzyme functions and versatile PME-1 activities derived from coupling substrate-mimicking motifs to dynamic structured cores.


Assuntos
Proteína Fosfatase 2 , Microscopia Crioeletrônica , Desmetilação , Holoenzimas/metabolismo , Metilação , Proteína Fosfatase 2/metabolismo
13.
J Cell Sci ; 134(13)2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34228795

RESUMO

Neurodevelopmental disorders (NDDs), including intellectual disability (ID), autism and schizophrenia, have high socioeconomic impact, yet poorly understood etiologies. A recent surge of large-scale genome or exome sequencing studies has identified a multitude of mostly de novo mutations in subunits of the protein phosphatase 2A (PP2A) holoenzyme that are strongly associated with NDDs. PP2A is responsible for at least 50% of total Ser/Thr dephosphorylation in most cell types and is predominantly found as trimeric holoenzymes composed of catalytic (C), scaffolding (A) and variable regulatory (B) subunits. PP2A can exist in nearly 100 different subunit combinations in mammalian cells, dictating distinct localizations, substrates and regulatory mechanisms. PP2A is well established as a regulator of cell division, growth, and differentiation, and the roles of PP2A in cancer and various neurodegenerative disorders, such as Alzheimer's disease, have been reviewed in detail. This Review summarizes and discusses recent reports on NDDs associated with mutations of PP2A subunits and PP2A-associated proteins. We also discuss the potential impact of these mutations on the structure and function of the PP2A holoenzymes and the etiology of NDDs.


Assuntos
Deficiência Intelectual , Proteína Fosfatase 2 , Animais , Humanos , Deficiência Intelectual/genética , Mutação , Fosforilação , Proteína Fosfatase 2/genética , Proteína Fosfatase 2/metabolismo , Subunidades Proteicas/metabolismo
14.
JCI Insight ; 6(9)2021 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-33784258

RESUMO

Perilipin 2 (PLIN2) is a lipid droplet (LD) protein in ß cells that increases under nutritional stress. Downregulation of PLIN2 is often sufficient to reduce LD accumulation. To determine whether PLIN2 positively or negatively affects ß cell function under nutritional stress, PLIN2 was downregulated in mouse ß cells, INS1 cells, and human islet cells. ß Cell-specific deletion of PLIN2 in mice on a high-fat diet reduced glucose-stimulated insulin secretion (GSIS) in vivo and in vitro. Downregulation of PLIN2 in INS1 cells blunted GSIS after 24-hour incubation with 0.2 mM palmitic acid. Downregulation of PLIN2 in human pseudoislets cultured at 5.6 mM glucose impaired both phases of GSIS, indicating that PLIN2 is critical for GSIS. Downregulation of PLIN2 decreased specific OXPHOS proteins in all 3 models and reduced oxygen consumption rates in INS1 cells and mouse islets. Moreover, we found that PLIN2-deficient INS1 cells increased the distribution of a fluorescent oleic acid analog to mitochondria and showed signs of mitochondrial stress, as indicated by susceptibility to fragmentation and alterations of acyl-carnitines and glucose metabolites. Collectively, PLIN2 in ß cells has an important role in preserving insulin secretion, ß cell metabolism, and mitochondrial function under nutritional stress.


Assuntos
Secreção de Insulina/genética , Células Secretoras de Insulina/metabolismo , Gotículas Lipídicas/metabolismo , Perilipina-2/genética , Estresse Fisiológico/genética , Animais , Carnitina/análogos & derivados , Carnitina/metabolismo , Dieta Hiperlipídica , Regulação para Baixo , Glucose/metabolismo , Humanos , Técnicas In Vitro , Ilhotas Pancreáticas , Camundongos , Camundongos Knockout , Mitocôndrias/metabolismo , Ácido Oleico/metabolismo , Fosforilação Oxidativa , Estresse Oxidativo/genética , Consumo de Oxigênio/genética , Perilipina-2/metabolismo , Ratos
15.
Cell Calcium ; 96: 102382, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33684833

RESUMO

Mitochondrial Ca2+ transport is essential for regulating cell bioenergetics, Ca2+ signaling and cell death. Mitochondria accumulate Ca2+ via the mitochondrial Ca2+ uniporter (MCU), whereas Ca2+ is extruded by the mitochondrial Na+/Ca2+ (mtNCX) and H+/Ca2+ exchangers. The balance between these processes is essential for preventing toxic mitochondrial Ca2+ overload. Recent work demonstrated that MCU activity varies significantly among tissues, likely reflecting tissue-specific Ca2+ signaling and energy needs. It is less clear whether this diversity in MCU activity is matched by tissue-specific diversity in mitochondrial Ca2+ extrusion. Here we compared properties of mitochondrial Ca2+ extrusion in three tissues with prominent mitochondria function: brain, heart and liver. At the transcript level, expression of the Na+/Ca2+/Li+ exchanger (NCLX), which has been proposed to mediate mtNCX transport, was significantly greater in liver than in brain or heart. At the functional level, Na+ robustly activated Ca2+ efflux from brain and heart mitochondria, but not from liver mitochondria. The mtNCX inhibitor CGP37157 blocked Ca2+ efflux from brain and heart mitochondria but had no effect in liver mitochondria. Replacement of Na+ with Li+ to test the involvement of NCLX, resulted in a slowing of mitochondrial Ca2+ efflux by ∼70 %. Collectively, our findings suggest that mtNCX is responsible for Ca2+ extrusion from the mitochondria of the brain and heart, but plays only a small, if any, role in mitochondria of the liver. They also reveal that Li+ is significantly less effective than Na+ in driving mitochondrial Ca2+ efflux.


Assuntos
Encéfalo/metabolismo , Cálcio/metabolismo , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Hepáticas/metabolismo , Trocador de Sódio e Cálcio/metabolismo , Tiazepinas/farmacologia , Animais , Encéfalo/efeitos dos fármacos , Células Cultivadas , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Lítio/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias Hepáticas/efeitos dos fármacos , Sódio/farmacologia , Trocador de Sódio e Cálcio/antagonistas & inibidores
16.
J Biol Chem ; 296: 100082, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33199366

RESUMO

Proper brain development and function requires finely controlled mechanisms for protein turnover, and disruption of genes involved in proteostasis is a common cause of neurodevelopmental disorders. Kelch-like 15 (KLHL15) is a substrate adaptor for cullin3-containing E3 ubiquitin ligases, and KLHL15 gene mutations were recently described as a cause of severe X-linked intellectual disability. Here, we used a bioinformatics approach to identify a family of neuronal microtubule-associated proteins as KLHL15 substrates, which are themselves critical for early brain development. We biochemically validated doublecortin (DCX), also an X-linked disease protein, and doublecortin-like kinase 1 and 2 as bona fide KLHL15 interactors and mapped KLHL15 interaction regions to their tandem DCX domains. Shared with two previously identified KLHL15 substrates, a FRY tripeptide at the C-terminal edge of the second DCX domain is necessary for KLHL15-mediated ubiquitination of DCX and doublecortin-like kinase 1 and 2 and subsequent proteasomal degradation. Conversely, silencing endogenous KLHL15 markedly stabilizes these DCX domain-containing proteins and prolongs their half-life. Functionally, overexpression of KLHL15 in the presence of WT DCX reduces dendritic complexity of cultured hippocampal neurons, whereas neurons expressing FRY-mutant DCX are resistant to KLHL15. Collectively, our findings highlight the critical importance of the E3 ubiquitin ligase adaptor KLHL15 in proteostasis of neuronal microtubule-associated proteins and identify a regulatory network important for development of the mammalian nervous system.


Assuntos
Proteínas dos Microfilamentos/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Neuropeptídeos/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Western Blotting , Células COS , Chlorocebus aethiops , Proteínas do Domínio Duplacortina , Proteína Duplacortina , Células HEK293 , Humanos , Imunoprecipitação , Deficiência Intelectual/genética , Deficiência Intelectual/metabolismo , Proteínas dos Microfilamentos/genética , Proteínas Associadas aos Microtúbulos/genética , Neurônios/metabolismo , Neuropeptídeos/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitinação/genética , Ubiquitinação/fisiologia
17.
Cell Death Dis ; 11(4): 254, 2020 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-32312949

RESUMO

Impairment of mitochondrial structure and function is strongly linked to glaucoma pathogenesis. Despite the widely appreciated disease relevance of mitochondrial dysfunction and loss, the molecular mechanisms underlying mitochondrial fragmentation and metabolic stress in glaucoma are poorly understood. We demonstrate here that glaucomatous retinal ganglion cells (RGCs) show loss of A-kinase anchoring protein 1 (AKAP1), activation of calcineurin (CaN) and reduction of dynamin-related protein 1 (Drp1) phosphorylation at serine 637 (Ser637). These findings suggest that AKAP1-mediated phosphorylation of Drp1 at Ser637 has a critical role in RGC survival in glaucomatous neurodegeneration. Male mice lacking AKAP1 show increases in CaN and total Drp1 levels, as well as a decrease in Drp1 phosphorylation at Ser637 in the retina. Ultrastructural analysis of mitochondria shows that loss of AKAP1 triggers mitochondrial fragmentation and loss, as well as mitophagosome formation in RGCs. Loss of AKAP1 deregulates oxidative phosphorylation (OXPHOS) complexes (Cxs) by increasing CxII and decreasing CxIII-V, leading to metabolic and oxidative stress. Also, loss of AKAP1 decreases Akt phosphorylation at Serine 473 (Ser473) and threonine 308 (Thr308) and activates the Bim/Bax signaling pathway in the retina. These results suggest that loss of AKAP1 has a critical role in RGC dysfunction by decreasing Drp1 phosphorylation at Ser637, deregulating OXPHOS, decreasing Akt phosphorylation at Ser473 and Thr308, and activating the Bim/Bax pathway in glaucomatous neurodegeneration. Thus, we propose that overexpression of AKAP1 or modulation of Drp1 phosphorylation at Ser637 are potential therapeutic strategies for neuroprotective intervention in glaucoma and other mitochondria-related optic neuropathies.


Assuntos
Proteínas de Ancoragem à Quinase A/metabolismo , Dinaminas/metabolismo , Mitocôndrias/metabolismo , Dinâmica Mitocondrial/fisiologia , Animais , Camundongos Transgênicos , Estresse Oxidativo/fisiologia , Células Ganglionares da Retina/metabolismo , Transdução de Sinais/fisiologia
18.
J Am Heart Assoc ; 9(7): e014366, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32248761

RESUMO

Background Nuclear-to-mitochondrial communication regulating gene expression and mitochondrial function is a critical process following cardiac ischemic injury. In this study, we determined that cyclin C, a component of the Mediator complex, regulates cardiac and mitochondrial function in part by modifying mitochondrial fission. We tested the hypothesis that cyclin C functions as a transcriptional cofactor in the nucleus and a signaling molecule stimulating mitochondrial fission in response to stimuli such as cardiac ischemia. Methods and Results We utilized gain- and loss-of-function mouse models in which the CCNC (cyclin C) gene was constitutively expressed (transgenic, CycC cTg) or deleted (knockout, CycC cKO) in cardiomyocytes. The knockout and transgenic mice exhibited decreased cardiac function and altered mitochondria morphology. The hearts of knockout mice had enlarged mitochondria with increased length and area, whereas mitochondria from the hearts of transgenic mice were significantly smaller, demonstrating a role for cyclin C in regulating mitochondrial dynamics in vivo. Hearts from knockout mice displayed altered gene transcription and metabolic function, suggesting that cyclin C is essential for maintaining normal cardiac function. In vitro and in vivo studies revealed that cyclin C translocates to the cytoplasm, enhancing mitochondria fission following stress. We demonstrated that cyclin C interacts with Cdk1 (cyclin-dependent kinase 1) in vivo following ischemia/reperfusion injury and that, consequently, pretreatment with a Cdk1 inhibitor results in reduced mitochondrial fission. This finding suggests a potential therapeutic target to regulate mitochondrial dynamics in response to stress. Conclusions Our study revealed that cyclin C acts as a nuclear-to-mitochondrial signaling factor that regulates both cardiac hypertrophic gene expression and mitochondrial fission. This finding provides new insights into the regulation of cardiac energy metabolism following acute ischemic injury.


Assuntos
Ciclina C/metabolismo , Metabolismo Energético , Mitocôndrias Cardíacas/metabolismo , Dinâmica Mitocondrial , Traumatismo por Reperfusão Miocárdica/metabolismo , Miócitos Cardíacos/metabolismo , Animais , Proteína Quinase CDC2/antagonistas & inibidores , Proteína Quinase CDC2/metabolismo , Células Cultivadas , Ciclina C/deficiência , Ciclina C/genética , Modelos Animais de Doenças , Metabolismo Energético/efeitos dos fármacos , Humanos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/patologia , Dinâmica Mitocondrial/efeitos dos fármacos , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Inibidores de Proteínas Quinases/farmacologia , Transporte Proteico , Ratos Wistar , Transdução de Sinais
19.
J Neurosci ; 40(15): 3119-3129, 2020 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-32144179

RESUMO

Mitochondrial fission catalyzed by dynamin-related protein 1 (Drp1) is necessary for mitochondrial biogenesis and maintenance of healthy mitochondria. However, excessive fission has been associated with multiple neurodegenerative disorders, and we recently reported that mice with smaller mitochondria are sensitized to ischemic stroke injury. Although pharmacological Drp1 inhibition has been put forward as neuroprotective, the specificity and mechanism of the inhibitor used is controversial. Here, we provide genetic evidence that Drp1 inhibition is neuroprotective. Drp1 is activated by dephosphorylation of an inhibitory phosphorylation site, Ser637. We identify Bß2, a mitochondria-localized protein phosphatase 2A (PP2A) regulatory subunit, as a neuron-specific Drp1 activator in vivo Bß2 KO mice of both sexes display elongated mitochondria in neurons and are protected from cerebral ischemic injury. Functionally, deletion of Bß2 and maintained Drp1 Ser637 phosphorylation improved mitochondrial respiratory capacity, Ca2+ homeostasis, and attenuated superoxide production in response to ischemia and excitotoxicity in vitro and ex vivo Last, deletion of Bß2 rescued excessive stroke damage associated with dephosphorylation of Drp1 S637 and mitochondrial fission. These results indicate that the state of mitochondrial connectivity and PP2A/Bß2-mediated dephosphorylation of Drp1 play a critical role in determining the severity of cerebral ischemic injury. Therefore, Bß2 may represent a target for prophylactic neuroprotective therapy in populations at high risk of stroke.SIGNIFICANCE STATEMENT With recent advances in clinical practice including mechanical thrombectomy up to 24 h after the ischemic event, there is resurgent interest in neuroprotective stroke therapies. In this study, we demonstrate reduced stroke damage in the brain of mice lacking the Bß2 regulatory subunit of protein phosphatase 2A, which we have shown previously acts as a positive regulator of the mitochondrial fission enzyme dynamin-related protein 1 (Drp1). Importantly, we provide evidence that deletion of Bß2 can rescue excessive ischemic damage in mice lacking the mitochondrial PKA scaffold AKAP1, apparently via opposing effects on Drp1 S637 phosphorylation. These results highlight reversible phosphorylation in bidirectional regulation of Drp1 activity and identify Bß2 as a potential pharmacological target to protect the brain from stroke injury.


Assuntos
Isquemia Encefálica/genética , Isquemia Encefálica/prevenção & controle , Dinaminas/genética , Neurônios/metabolismo , Animais , Cálcio/metabolismo , Dinaminas/metabolismo , Feminino , Homeostase , Infarto da Artéria Cerebral Média/genética , Infarto da Artéria Cerebral Média/patologia , Masculino , Camundongos , Camundongos Knockout , Mitocôndrias/metabolismo , Fosforilação , Cultura Primária de Células , Proteína Fosfatase 2/genética , Acidente Vascular Cerebral/patologia , Acidente Vascular Cerebral/prevenção & controle , Superóxidos/metabolismo
20.
J Biol Chem ; 295(17): 5654-5668, 2020 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-32156701

RESUMO

Protein phosphatase 2A (PP2A) is a large enzyme family responsible for most cellular Ser/Thr dephosphorylation events. PP2A substrate specificity, localization, and regulation by second messengers rely on more than a dozen regulatory subunits (including B/R2, B'/R5, and B″/R3), which form the PP2A heterotrimeric holoenzyme by associating with a dimer comprising scaffolding (A) and catalytic (C) subunits. Because of partial redundancy and high endogenous expression of PP2A holoenzymes, traditional approaches of overexpressing, knocking down, or knocking out PP2A regulatory subunits have yielded only limited insights into their biological roles and substrates. To this end, here we sought to reduce the complexity of cellular PP2A holoenzymes. We used tetracycline-inducible expression of pairs of scaffolding and regulatory subunits with complementary charge-reversal substitutions in their interaction interfaces. For each of the three regulatory subunit families, we engineered A/B charge-swap variants that could bind to one another, but not to endogenous A and B subunits. Because endogenous Aα was targeted by a co-induced shRNA, endogenous B subunits were rapidly degraded, resulting in expression of predominantly a single PP2A heterotrimer composed of the A/B charge-swap pair and the endogenous catalytic subunit. Using B'δ/PPP2R5D, we show that PP2A complexity reduction, but not PP2A overexpression, reveals a role of this holoenzyme in suppression of extracellular signal-regulated kinase signaling and protein kinase A substrate dephosphorylation. When combined with global phosphoproteomics, the PP2A/B'δ reduction approach identified consensus dephosphorylation motifs in its substrates and suggested that residues surrounding the phosphorylation site play roles in PP2A substrate specificity.


Assuntos
Proteína Fosfatase 2/metabolismo , Animais , Células COS , Domínio Catalítico , Chlorocebus aethiops , Células HEK293 , Humanos , Modelos Moleculares , Fosforilação , Mapas de Interação de Proteínas , Multimerização Proteica , Proteína Fosfatase 2/análise , Subunidades Proteicas/análise , Subunidades Proteicas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...