Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Struct Dyn ; 10(5): 054304, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37901682

RESUMO

We present a dedicated end-station for solution phase high repetition rate (MHz) picosecond hard x-ray spectroscopy at beamline 15-2 of the Stanford Synchrotron Radiation Lightsource. A high-power ultrafast ytterbium-doped fiber laser is used to photoexcite the samples at a repetition rate of 640 kHz, while the data acquisition operates at the 1.28 MHz repetition rate of the storage ring recording data in an alternating on-off mode. The time-resolved x-ray measurements are enabled via gating the x-ray detectors with the 20 mA/70 ps camshaft bunch of SPEAR3, a mode available during the routine operations of the Stanford Synchrotron Radiation Lightsource. As a benchmark study, aiming to demonstrate the advantageous capabilities of this end-station, we have conducted picosecond Fe K-edge x-ray absorption spectroscopy on aqueous [FeII(phen)3]2+, a prototypical spin crossover complex that undergoes light-induced excited spin state trapping forming an electronic excited state with a 0.6-0.7 ns lifetime. In addition, we report transient Fe Kß main line and valence-to-core x-ray emission spectra, showing a unique detection sensitivity and an excellent agreement with model spectra and density functional theory calculations, respectively. Notably, the achieved signal-to-noise ratio, the overall performance, and the routine availability of the developed end-station have enabled a systematic time-resolved science program using the monochromatic beam at the Stanford Synchrotron Radiation Lightsource.

2.
Struct Dyn ; 4(4): 044021, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28529962

RESUMO

Picosecond X-ray absorption (XA) spectroscopy at the S K-edge (∼2.4 keV) is demonstrated and used to monitor excited state dynamics in a small organosulfur molecule (2-Thiopyridone, 2TP) following optical excitation. Multiple studies have reported that the thione (2TP) is converted into the thiol (2-Mercaptopyridine, 2MP) following photoexcitation. However, the timescale and photochemical pathway of this reaction remain uncertain. In this work, time-resolved XA spectroscopy at the S K-edge is used to monitor the formation and decay of two transient species following 400 nm excitation of 2TP dissolved in acetonitrile. The first transient species forms within the instrument response time (70 ps) and decays within 6 ns. The second transient species forms on a timescale of ∼400 ps and decays on a 15 ns timescale. Time-dependent density functional theory is used to identify the first and second transient species as the lowest-lying triplet states of 2TP and 2MP, respectively. This study demonstrates transient S K-edge XA spectroscopy as a sensitive and viable probe of time-evolving charge dynamics near sulfur sites in small molecules with future applications towards studying complex biological and material systems.

3.
Inorg Chem ; 55(12): 5895-903, 2016 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-27248860

RESUMO

We present a time-resolved X-ray spectroscopic study of the structural and electronic rearrangements of the photocatalyst Mn2(CO)10 upon photocleavage of the metal-metal bond. Our study of the manganese K-edge fine structure reveals details of both the molecular structure and valence charge distribution of the photodissociated radical product. Transient X-ray absorption spectra of the formation of the Mn(CO)5 radical demonstrate surprisingly small structural modifications between the parent molecule and the resulting two identical manganese monomers. Small modifications of the local valence charge distribution are decisive for the catalytic activity of the radical product. The spectral changes reflect altered hybridization of metal-3d, metal-4p, and ligand-2p orbitals, particularly loss of interligand interaction, accompanied by the necessary spin transition due to radical formation. The spectral changes in the manganese pre- and main-edge region are well-reproduced by time-dependent density functional theory and ab initio multiple scattering calculations.

4.
Proc Natl Acad Sci U S A ; 112(15): 4600-5, 2015 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-25825757

RESUMO

The photoreductive dissolution of Mn(IV) oxide minerals in sunlit aquatic environments couples the Mn cycle to the oxidation of organic matter and fate of trace elements associated with Mn oxides, but the intrinsic rate and mechanism of mineral dissolution in the absence of organic electron donors is unknown. We investigated the photoreduction of δ-MnO2 nanosheets at pH 6.5 with Na or Ca as the interlayer cation under 400-nm light irradiation and quantified the yield and timescales of Mn(III) production. Our study of transient intermediate states using time-resolved optical and X-ray absorption spectroscopy showed key roles for chemically distinct Mn(III) species. The reaction pathway involves (i) formation of Jahn-Teller distorted Mn(III) sites in the octahedral sheet within 0.6 ps of photoexcitation; (ii) Mn(III) migration into the interlayer within 600 ps; and (iii) increased nanosheet stacking. We propose that irreversible Mn reduction is coupled to hole-scavenging by surface water molecules or hydroxyl groups, with associated radical formation. This work demonstrates the importance of direct MnO2 photoreduction in environmental processes and provides a framework to test new hypotheses regarding the role of organic molecules and metal species in photochemical reactions with Mn oxide phases. The timescales for the production and evolution of Mn(III) species and a catalytic role for interlayer Ca(2+) identified here from spectroscopic measurements can also guide the design of efficient Mn-based catalysts for water oxidation.

5.
J Phys Chem Lett ; 5(15): 2753-9, 2014 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-26277975

RESUMO

Understanding interfacial charge-transfer processes on the atomic level is crucial to support the rational design of energy-challenge relevant systems such as solar cells, batteries, and photocatalysts. A femtosecond time-resolved core-level photoelectron spectroscopy study is performed that probes the electronic structure of the interface between ruthenium-based N3 dye molecules and ZnO nanocrystals within the first picosecond after photoexcitation and from the unique perspective of the Ru reporter atom at the center of the dye. A transient chemical shift of the Ru 3d inner-shell photolines by (2.3 ± 0.2) eV to higher binding energies is observed 500 fs after photoexcitation of the dye. The experimental results are interpreted with the aid of ab initio calculations using constrained density functional theory. Strong indications for the formation of an interfacial charge-transfer state are presented, providing direct insight into a transient electronic configuration that may limit the efficiency of photoinduced free charge-carrier generation.

6.
J Am Chem Soc ; 135(29): 10646-53, 2013 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-23790087

RESUMO

Electron solvation is examined at the interface of a room temperature ionic liquid (RTIL) and an Ag(111) electrode. Femtosecond two-photon photoemission spectroscopy is used to inject an electron into an ultrathin film of RTIL 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide ([Bmpyr](+)[NTf2](-)). While much of current literature highlights slower nanosecond solvation mechanisms in bulk ionic liquids, we observe only a femtosecond response, supporting morphology dependent and interface specific electron solvation mechanisms. The injected excess electron is found to reside in an electron affinity level residing near the metal surface. Population of this state decays back to the metal with a time constant of 400 ± 150 fs. Electron solvation is measured as a dynamic decrease in the energy with a time constant of 350 ± 150 fs. We observe two distinct temperature regimes, with a critical temperature near 250 K. The low temperature regime is characterized by a higher work function of 4.41 eV, while the high temperature regime is characterized by a lower work function of 4.19 eV. The total reorganizational energy of solvation changes above and below the critical temperature. In the high temperature regime, the electron affinity level solvates by 540 meV at 350 K, and below the critical temperature, solvation decreases to 200 meV at 130 K. This study will provide valuable insight to interface specific solvation of room temperature ionic liquids.

7.
J Phys Chem A ; 117(21): 4444-54, 2013 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-23635307

RESUMO

Ruthenium L3-edge X-ray absorption (XA) spectroscopy probes unoccupied 4d orbitals of the metal atom and is increasingly being used to investigate the local electronic structure in ground and excited electronic states of Ru complexes. The simultaneous development of computational tools for simulating Ru L3-edge spectra is crucial for interpreting the spectral features at a molecular level. This study demonstrates that time-dependent density functional theory (TDDFT) is a viable and predictive tool for simulating ruthenium L3-edge XA spectroscopy. We systematically investigate the effects of exchange correlation functional and implicit and explicit solvent interactions on a series of Ru(II) and Ru(III) complexes in their ground and electronic excited states. The TDDFT simulations reproduce all of the experimentally observed features in Ru L3-edge XA spectra within the experimental resolution (0.4 eV). Our simulations identify ligand-specific charge transfer features in complicated Ru L3-edge spectra of [Ru(CN)6](4-) and Ru(II) polypyridyl complexes illustrating the advantage of using TDDFT in complex systems. We conclude that the B3LYP functional most accurately predicts the transition energies of charge transfer features in these systems. We use our TDDFT approach to simulate experimental Ru L3-edge XA spectra of transition metal mixed-valence dimers of the form [(NC)5M(II)-CN-Ru(III)(NH3)5](-) (where M = Fe or Ru) dissolved in water. Our study determines the spectral signatures of electron delocalization in Ru L3-edge XA spectra. We find that the inclusion of explicit solvent molecules is necessary for reproducing the spectral features and the experimentally determined valencies in these mixed-valence complexes. This study validates the use of TDDFT for simulating Ru 2p excitations using popular quantum chemistry codes and providing a powerful interpretive tool for equilibrium and ultrafast Ru L3-edge XA spectroscopy.

8.
Faraday Discuss ; 157: 463-74; discussion 475-500, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23230783

RESUMO

Ultrafast excited-state evolution in polypyridyl Fe(II) complexes is of fundamental interest for understanding the origins of the sub-ps spin-state changes that occur upon photoexcitation of this class of compounds as well as for the potential impact such ultrafast dynamics have on incorporation of these compounds in solar energy conversion schemes or switchable optical storage technologies. We have demonstrated that ground-state and, more importantly, ultrafast time-resolved X-ray absorption methods can offer unique insights into the interplay between electronic and geometric structure that underpins the photo-induced dynamics of this class of compounds. The present contribution examines in greater detail how the symmetry of the ligand field surrounding the metal ion can be probed using these X-ray techniques. In particular, we show that steady-state K-edge spectroscopy of the nearest-neighbour nitrogen atoms reveals the characteristic chemical environment of the respective ligands and suggests an interesting target for future charge-transfer femtosecond and attosecond spectroscopy in the X-ray water window.

9.
J Phys Chem Lett ; 3(12): 1695-700, 2012 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-26285730

RESUMO

This study uses transient X-ray absorption (XA) spectroscopy and time-dependent density functional theory (TD-DFT) to directly visualize the charge density around the metal atom and the surrounding ligands following an ultrafast metal-to-ligand charge-transfer (MLCT) process in the widely used Ru(II) solar cell dye, Ru(dcbpy)2(NCS)2 (termed N3). We measure the Ru L-edge XA spectra of the singlet ground ((1)A1) and the transient triplet ((3)MLCT) excited state of N3(4-) and perform TD-DFT calculations of 2p core-level excitations, which identify a unique spectral signature of the electron density on the NCS ligands. We find that the Ru 2p, Ru eg, and NCS π* orbitals are stabilized by 2.0, 1.0, and 0.6 eV, respectively, in the transient (3)MLCT state of the dye. These results highlight the role of the NCS ligands in governing the oxidation state of the Ru center.

10.
J Phys Chem B ; 115(12): 2970-8, 2011 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-21391538

RESUMO

We present sum frequency scattering spectra on kinetically stabilized emulsions consisting of nanoscopic oil droplets in water, stabilized with sodium dodecyl sulfate (SDS). We have measured the interfacial structure of the alkyl chains of the surfactant molecules, the alkyl chain of the oil molecules, the weakly dispersive D(2)O response, and the interference between SDS and the oil. We find a big difference in chain conformation: SDS has many chain defects, whereas the oil has very few. Our spectra are interpreted to originate from a surface structure with oil molecules predominantly oriented parallel with respect to the plane of the interface. The SDS headgroup is surrounded by water molecules. The SDS alkyl tail is in a disordered state and partially in contact with water. Such a conformation of surfactant occupies a surface area of several hundreds of squared angstroms.


Assuntos
Óleos/química , Dodecilsulfato de Sódio/química , Tensoativos/química , Água/química , Deutério/química , Análise Espectral , Propriedades de Superfície
11.
J Am Chem Soc ; 132(7): 2122-3, 2010 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-20121125

RESUMO

Surfactants such as sodium dodecylsulfate (SDS) can reduce the interfacial tension between bulk water and bulk n-hexadecane by 42 mN/m. Although reduction of interfacial tension should also take place on the interface of nanoscopic oil droplets in water, vibrational sum frequency scattering experiments indicate otherwise. In these measurements we have directly measured the adsorption of SDS onto hexadecane oil droplets with an average radius of 83 nm. We find that the interfacial density of adsorbed SDS is at least 1 order of magnitude lower than that at a corresponding planar interface. The derived maximum decrease in interfacial tension is only 5 mN/m.

12.
J Phys Chem B ; 110(20): 10002-10, 2006 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-16706459

RESUMO

The thickness-dependent interfacial band structure was determined for thin films of C(60) on Ag(111) by angle-resolved two-photon photoemission spectroscopy. Dispersions of molecular-orbital derived bands (HOMO, LUMO+1, and LUMO+2) were acquired, and limits were placed on their possible effective masses. A group theoretic approach is also incorporated to further understand the properties of these states. The HOMO, LUMO+1, and LUMO+2 bands possess (best-fit) effective masses of -7 m(e), -7 m(e), and -12 m(e), respectively. These values are consistent with theoretical calculations, averaged over the closely spaced subbands for each state, and provide practical limits on the effective fundamental charge-transport properties of C(60) films.

13.
J Phys Chem B ; 109(43): 20370-8, 2005 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-16853636

RESUMO

Two-photon photoemission of image potential states above monolayers of p-xylene/Ag(111) shows that electrons with different momenta have very different rise and decay rates as a function of parallel momentum. The dynamics are due to energy and momentum loss (intraband relaxation), which we model as a stochastic process isomorphic to the overdamped motion of a harmonic oscillator. The method extracts a friction coefficient from the data which can be explained by electron-electron scattering in a formalism based on the Lindhard dielectric function. One-electron excitations (interband transistions) dominate the dissipation mechanism, with a smaller contribution from collective electronic excitations (plasmons).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...