Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mar Pollut Bull ; 169: 112464, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34087666

RESUMO

Natural coastlines are being replaced by artificial structures (pilings, pontoons, breakwaters), with negative environmental impacts, particularly in marinas. Ropes seeded with mussels (Mytilus galloprovincialis) were added to artificial structures in a marina, using aquaculture techniques, to reduce the colonisation of invasive taxa. After 6-months, droplines beneath pontoons had the highest seeded mussel survival and growth, richness of native and invasive taxa, and proportion of invasive to native taxa, compared with the other interventions. Mussel ropes on the intertidal structures (pilings and breakwaters) supported higher biomass of native taxa, whereas mussel ropes on subtidal structures (pontoons and breakwaters) had reduced biomass of invasive taxa, relative to the unseeded ropes. Droplines had the greater biomass of mussels, while mussel ropes placed under pontoons, and in subtidal gabion baskets limited the biomass but not the diversity of invasive species. Further study is required to determine whether these interventions can be upscaled to improve both the native biodiversity and functioning of marinas.


Assuntos
Ecossistema , Mytilus , Animais , Aquicultura , Biodiversidade , Espécies Introduzidas
2.
Mar Environ Res ; 165: 105243, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33476978

RESUMO

The marine environment is being increasingly modified by the construction of artificial structures, the impacts of which may be mitigated through eco-engineering. To date, eco-engineering has predominantly aimed to increase biodiversity, but enhancing other ecological functions is arguably of equal importance for artificial structures. Here, we manipulated complexity through habitat structure (flat, and 2.5 cm, 5 cm deep vertical and 5 cm deep horizontal crevices) and seeding with the native oyster (Saccostrea glomerata, unseeded and seeded) on concrete tiles (0.25 m × 0.25 m) affixed to seawalls to investigate whether complexity (both orientation and depth of crevices) influences particle removal rates by suspension feeders and colonisation by different functional groups, and whether there are any ecological trade-offs between these functions. After 12 months, complex seeded tiles generally supported a greater abundance of suspension feeding taxa and had higher particle removal rates than flat tiles or unseeded tiles. The richness and diversity of taxa also increased with complexity. The effect of seeding was, however, generally weaker on tiles with complex habitat structure. However, the orientation of habitat complexity and the depth of the crevices did not influence particle removal rates or colonising taxa. Colonisation by non-native taxa was low compared to total taxa richness. We did not detect negative ecological trade-offs between increased particle removal rates and diversity and abundance of key functional groups. Our results suggest that the addition of complexity to marine artificial structures could potentially be used to enhance both biodiversity and particle removal rates. Consequently, complexity should be incorporated into future eco-engineering projects to provide a range of ecological functions in urbanised estuaries.


Assuntos
Ecossistema , Ostreidae , Animais , Biodiversidade , Estuários
3.
Sci Total Environ ; 658: 1293-1305, 2019 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-30677991

RESUMO

Marine harbours are the focus of a diverse range of activities and subject to multiple anthropogenically induced pressures. Support for environmental management options aimed at improving degraded harbours depends on understanding the factors which influence people's perceptions of harbour environments. We used an online survey, across 12 harbours, to assess sources of variation people's perceptions of harbour health and ecological engineering. We tested the hypotheses: 1) people living near impacted harbours would consider their environment to be more unhealthy and degraded, be more concerned about the environment and supportive of and willing to pay for ecological engineering relative to those living by less impacted harbours, and 2) people with greater connectedness to the harbour would be more concerned about and have greater perceived knowledge of the environment, and be more supportive of, knowledgeable about and willing to pay for ecological engineering, than those with less connectedness. Across twelve locations, the levels of degradation and modification by artificial structures were lower and the concern and knowledge about the environment and ecological engineering were greater in the six Australasian and American than the six European and Asian harbours surveyed. We found that people's perception of harbours as healthy or degraded, but not their concern for the environment, reflected the degree to which harbours were impacted. There was a positive relationship between the percentage of shoreline modified and the extent of support for and people's willingness to pay indirect costs for ecological engineering. At the individual level, measures of connectedness to the harbour environment were good predictors of concern for and perceived knowledge about the environment but not support for and perceived knowledge about ecological engineering. To make informed decisions, it is important that people are empowered with sufficient knowledge of the environmental issues facing their harbour and ecological engineering options.

4.
J Environ Manage ; 230: 488-496, 2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30340122

RESUMO

Ecological engineering principles are increasingly being applied to develop multifunctional artificial structures or rehabilitated habitats in coastal areas. Ecological engineering initiatives are primarily driven by marine scientists and coastal managers, but often the views of key user groups, which can strongly influence the success of projects, are not considered. We used an online survey and participatory mapping exercise to investigate differences in priority goals, sites and attitudes towards ecological engineering between marine scientists and coastal managers as compared to other stakeholders. The surveys were conducted across three Australian cities that varied in their level of urbanisation and environmental pressures. We tested the hypotheses that, relative to other stakeholders, marine scientists and coastal managers will: 1) be more supportive of ecological engineering; 2) be more likely to agree that enhancement of biodiversity and remediation of pollution are key priorities for ecological engineering; and 3) identify different priority areas and infrastructure or degraded habitats for ecological engineering. We also tested the hypothesis that 4) perceptions of ecological engineering would vary among locations, due to environmental and socio-economic differences. In all three harbours, marine scientists and coastal managers were more supportive of ecological engineering than other users. There was also greater support for ecological engineering in Sydney and Melbourne than Hobart. Most people identified transport infrastructure, in busy transport hubs (i.e. Circular Quay in Sydney, the Port in Melbourne and the Waterfront in Hobart) as priorities for ecological engineering, irrespective of their stakeholder group or location. There were, however, significant differences among locations in what people perceive as the key priorities for ecological engineering (i.e. biodiversity in Sydney and Melbourne vs. pollution in Hobart). Greater consideration of these location-specific differences is essential for effective management of artificial structures and rehabilitated habitats in urban embayments.


Assuntos
Biodiversidade , Austrália , Ecossistema , Engenharia , Poluição Ambiental , Urbanização
5.
Mar Pollut Bull ; 129(2): 762-771, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29108739

RESUMO

We analyzed the occurrence and status of infralittoral fringe populations of Cystoseira spp. (Fucales) at thirteen rocky sites around the Italian coastline, and explored the relationships with relevant environmental and anthropogenic variables. We found Cystoseira populations at 11 sites: most were scattered and comprised monospecific stands of C. compressa, and only 6 sites also supported sparse specimens of either C. amentacea var. stricta or C. brachycarpa. Coastal human population density, Chlorophyll a seawater concentrations, sea surface temperature, annual range of sea surface temperature and wave fetch explained most of the variation of the status of C. compressa. We hypothesize a generally unhealthy state of the Italian Cystoseira infralittoral fringe populations and identify multiple co-occurring anthropogenic stressors as the likely drivers of these poor conditions. Extensive baseline monitoring is needed to describe how Cystoseira populations are changing, and implement a management framework for the conservation of these valuable but vulnerable habitats.


Assuntos
Monitoramento Ambiental/métodos , Phaeophyceae/crescimento & desenvolvimento , Água do Mar/química , Clorofila/análise , Clorofila A , Ecossistema , Atividades Humanas , Humanos , Itália , Mar Mediterrâneo , Densidade Demográfica , Temperatura , Urbanização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...