Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Imaging ; 9(11)2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37998101

RESUMO

This paper presents a parallel implementation of a non-local transform-domain filter (BM4D). The effectiveness of the parallel implementation is demonstrated by denoising image series from computed tomography (CT) and magnetic resonance imaging (MRI). The basic idea of the filter is based on grouping and filtering similar data within the image. Due to the high level of similarity and data redundancy, the filter can provide even better denoising quality than current extensively used approaches based on deep learning (DL). In BM4D, cubes of voxels named patches are the essential image elements for filtering. Using voxels instead of pixels means that the area for searching similar patches is large. Because of this and the application of multi-dimensional transformations, the computation time of the filter is exceptionally long. The original implementation of BM4D is only single-threaded. We provide a parallel version of the filter that supports multi-core and many-core processors and scales on such versatile hardware resources, typical for high-performance computing clusters, even if they are concurrently used for the task. Our algorithm uses hybrid parallelisation that combines open multi-processing (OpenMP) and message passing interface (MPI) technologies and provides up to 283× speedup, which is a 99.65% reduction in processing time compared to the sequential version of the algorithm. In denoising quality, the method performs considerably better than recent DL methods on the data type that these methods have yet to be trained on.

2.
Technol Health Care ; 31(4): 1509-1523, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36641699

RESUMO

BACKGROUND: To say data is revolutionising the medical sector would be a vast understatement. The amount of medical data available today is unprecedented and has the potential to enable to date unseen forms of healthcare. To process this huge amount of data, an equally huge amount of computing power is required, which cannot be provided by regular desktop computers. These areas can be (and already are) supported by High-Performance-Computing (HPC), High-Performance Data Analytics (HPDA), and AI (together "HPC+"). OBJECTIVE: This overview article aims to show state-of-the-art examples of studies supported by the National Competence Centres (NCCs) in HPC+ within the EuroCC project, employing HPC, HPDA and AI for medical applications. METHOD: The included studies on different applications of HPC in the medical sector were sourced from the National Competence Centres in HPC and compiled into an overview article. Methods include the application of HPC+ for medical image processing, high-performance medical and pharmaceutical data analytics, an application for pediatric dosimetry, and a cloud-based HPC platform to support systemic pulmonary shunting procedures. RESULTS: This article showcases state-of-the-art applications and large-scale data analytics in the medical sector employing HPC+ within surgery, medical image processing in diagnostics, nutritional support of patients in hospitals, treating congenital heart diseases in children, and within basic research. CONCLUSION: HPC+ support scientific fields from research to industrial applications in the medical area, enabling researchers to run faster and more complex calculations, simulations and data analyses for the direct benefit of patients, doctors, clinicians and as an accelerator for medical research.


Assuntos
Metodologias Computacionais , Software , Criança , Humanos , Processamento de Imagem Assistida por Computador
3.
Diagnostics (Basel) ; 13(1)2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36611424

RESUMO

Background: The acute phase of the COVID-19 pandemic requires a redefinition of healthcare system to increase the number of available intensive care units for COVID-19 patients. This leads to the postponement of elective surgeries including the treatment of abdominal aortic aneurysm (AAA). The probabilistic rupture risk index (PRRI) recently showed its advantage over the diameter criterion in AAA rupture risk assessment. Its major improvement is in increased specificity and yet has the same sensitivity as the maximal diameter criterion. The objective of this study was to test the clinical applicability of the PRRI method in a quasi-prospective patient cohort study. Methods: Nineteen patients (fourteen males, five females) with intact AAA who were postponed due to COVID-19 pandemic were included in this study. The PRRI was calculated at the baseline via finite element method models. If a case was diagnosed as high risk (PRRI > 3%), the patient was offered priority in AAA intervention. Cases were followed until 10 September 2021 and a number of false positive and false negative cases were recorded. Results: Each case was assessed within 3 days. Priority in intervention was offered to two patients with high PRRI. There were four false positive cases and no false negative cases classified by PRRI. In three cases, the follow-up was very short to reach any conclusion. Conclusions: Integrating PRRI into clinical workflow is possible. Longitudinal validation of PRRI did not fail and may significantly decrease the false positive rate in AAA treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...