Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(13)2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37447845

RESUMO

While walkers are used as mobility aids for different gait impairments, little is known about the factors that affect the performance of such aids. Therefore, we investigated the impact of arm-holding conditions on gait stability and muscle activation. We used surface electromyography (sEMG) sensors on specific arm and leg muscles while the users took laps with a robotic walker, the mobile Tethered Pelvic Assist Device (mTPAD), on an instrumented mat. Eleven participants without gait disorders walked with and without a 10% body weight (BW) force applied on the pelvis in the following three configurations: (i) while gripping the walker's frame, (ii) while using an armrest with their arms at a 90∘ angle, and (iii) while using an armrest with their arms at a 130∘ angle for 5 min each. Our results showed that when applying a force, the users changed their gait to increase stability. We also discovered differences in muscle activation based on the user's specific arm conditions. Specifically, the 130∘ condition required the least muscle activation, while gripping the walker's frame increased specific muscle activation compared to 90∘ and 130∘. This study is the first to evaluate how arm-holding and external loading conditions alter gait and muscle activations using the mTPAD.


Assuntos
Procedimentos Cirúrgicos Robóticos , Andadores , Humanos , Marcha/fisiologia , Caminhada/fisiologia , Músculo Esquelético/fisiologia , Pelve , Fenômenos Biomecânicos
2.
Bioengineering (Basel) ; 10(6)2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37370629

RESUMO

Stroke is a leading cause of disability, impairing the ability to generate propulsive forces and causing significant lateral gait asymmetry. We aim to improve stroke survivors' gaits by promoting weight-bearing during affected limb stance. External forces can encourage this; e.g., vertical forces can augment the gravitational force requiring higher ground reaction forces, or lateral forces can shift the center of mass over the stance foot, altering the lateral placement of the center of pressure. With our novel design of a mobile Tethered Pelvic Assist Device (mTPAD) paired with the DeepSole system to predict the user's gait cycle percentage, we demonstrate how to apply three-dimensional forces on the pelvis without lower limb constraints. This work is the first result in the literature that shows that with an applied lateral force during affected limb stance, the center of pressure trajectory's lateral symmetry is significantly closer to a 0% symmetry (5.5%) than without external force applied (-9.8%,p<0.05). Furthermore, the affected limb's maximum relative pressure (p) significantly increases from 233.7p to 234.1p (p<0.05) with an applied downward force, increasing affected limb loading. This work highlights how the mTPAD increases weight-bearing and propulsive forces during gait, which is a crucial goal for stroke survivors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...