Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Harmful Algae ; 115: 102236, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35623692

RESUMO

The Asian clam (Corbicula fluminea) and eastern oyster (Crassostrea virginica) are important resource bivalves found in and downstream of waterways afflicted with cyanobacterial harmful algae blooms (CHABs), respectively. This study examined the potential for C. fluminea and C. virginica to become vectors of the hepatotoxin, microcystin, from the CHAB Microcystis. Laboratory experiments were performed to quantify clearance rates, particle selection, and accumulation of the hepatotoxin, microcystin, using a microcystin-producing Microcystis culture isolated from Lake Erie (strain LE-3) and field experiments were performed with water from Microcystis blooms in Lake Agawam, NY, USA. Clearance rates of Microcystis were faster (p<0.05) than those of Raphidocelis for C. fluminea, while C. virginica cleared Microcystis and Tisochrysis at similar rates. For both bivalves, clearance rates of bloom water were slower than cultures and clams displayed significantly greater electivity for green algae compared to wild populations of cyanobacteria in field experiments while oysters did not. In experiments with cultured Microcystis comprised of single and double cells, both bivalves accumulated >3 µg microcystins g - 1 (wet weight) in 24 - 72 h, several orders of magnitude beyond California guidance value (10 ng g - 1) but accumulated only up to 2 ng microcystins g - 1 when fed bloom water dominated by large Microcystis colonies for four days. For Asian clams, clearance rates and tissue microcystin content decreased when exposed to toxic Microcystis for 3 - 4 days. In contrast, eastern oysters did not depurate microcystin over 3 - 4-day exposures and accumulated an order of magnitude more microcystin than clams. This contrast suggests Asian clams are likely to accumulate minor amounts of microcystin by reducing clearance rates during blooms of Microcystis, selectively feeding on green algae, and depurating microcystin whereas oysters are more likely to accumulate microcystins and thus are more likely to be a vector for hepatotoxic shellfish poisoning in estuaries downstream of Microcystis blooms.


Assuntos
Corbicula , Crassostrea , Cianobactérias , Microcystis , Intoxicação por Frutos do Mar , Animais , Microcistinas/toxicidade , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...