Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Pharmacol ; 938: 175448, 2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36470444

RESUMO

NMDA receptors play critical roles in numerous physiological and pathological processes in CNS that requires development of modulating ligands. In particular, photoswitchable compounds that selectively target NMDA receptors would be particularly useful for analysis of receptor contributions to various processes. Recently, we identified a light-dependent anti-NMDA activity of the azobenzene-containing quaternary ammonium compounds DENAQ (diethylamine-azobenzene-quaternary ammonium) and DMNAQ (dimethylamine-azobenzene-quaternary ammonium). Here, we developed a series of light-sensitive compounds based on the DENAQ structure, and studied their action on glutamate receptors in rat brain neurons using patch-clamp method. We found that the activities of the compounds and the influence of illumination strongly depended on the structural details, as even minor structural modifications greatly altered the activity and sensitivity to illumination. The compound PyrAQ (pyrrolidine-azobenzene-quaternary ammonium) was the most active and produced fast and fully reversible inhibition of NMDA receptors. The IC50 values under ambient and monochromic light conditions were 2 and 14 µM, respectively. The anti-AMPA activity was much weaker. The action of PyrAQ did not depend on NMDA receptor activity, agonist concentration, or membrane voltage, making it a useful tool for photopharmacological studies.


Assuntos
Compostos de Amônio , Receptores de N-Metil-D-Aspartato , Animais , Ratos , Compostos de Amônio/farmacologia , Compostos Azo/farmacologia , Compostos Azo/química , Receptores de Glutamato , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores
2.
Int J Mol Sci ; 22(23)2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-34884976

RESUMO

Azobenzene/tetraethyl ammonium photochromic ligands (ATPLs) are photoactive compounds with a large variety of photopharmacological applications such as nociception control or vision restoration. Absorption band maximum and lifetime of the less stable isomer are important characteristics that determine the applicability of ATPLs. Substituents allow to adjust these characteristics in a range limited by the azobenzene/tetraethyl ammonium scaffold. The aim of the current study is to find the scope and limitations for the design of ATPLs with specific spectral and kinetic properties by introducing para substituents with different electronic effects. To perform this task we synthesized ATPLs with various electron acceptor and electron donor functional groups and studied their spectral and kinetic properties using flash photolysis and conventional spectroscopy techniques as well as quantum chemical modeling. As a result, we obtained diagrams that describe correlations between spectral and kinetic properties of ATPLs (absorption maxima of E and Z isomers of ATPLs, the thermal lifetime of their Z form) and both the electronic effect of substituents described by Hammett constants and structural parameters obtained from quantum chemical calculations. The provided results can be used for the design of ATPLs with properties that are optimal for photopharmacological applications.


Assuntos
Compostos Azo/química , Bloqueadores dos Canais de Potássio/química , Teoria Quântica , Tetraetilamônio/química , Termodinâmica , Fenômenos Químicos , Cinética , Estereoisomerismo
3.
ACS Chem Neurosci ; 12(18): 3347-3357, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34469111

RESUMO

Azobenzene-based quaternary ammonium compounds provide optical control of ion channels and are considered promising agents for regulation of neuronal excitability and for restoration of the photosensitivity of retinal cells. However, the selectivity of the action of these compounds remains insufficiently known. We studied the action of DENAQ (diethylamine-azobenzene-quaternary ammonium) and DMNAQ (dimethylamine-azobenzene-quaternary ammonium) on ionotropic glutamate receptors in rat brain neurons. In the dark, both compounds applied extracellularly caused fast and reversible inhibition of NMDA (N-methyl-d-aspartate) receptor-mediated currents with IC50 values of 10 and 5 µM, respectively. Light-induced transformation of DENAQ and DMNAQ to their cis forms caused the IC50 values to increase to 30 and 27 µM, respectively. Detailed analysis of this action revealed a complex nature consisting of fast inhibitory and slower potentiating effects. The AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) receptors were only weakly affected independently on illumination. We conclude that, in addition to their long-lasting intracellular action, which persists after washout, azobenzene-based quaternary ammonium compounds should affect glutamatergic transmission and synaptic plasticity during treatment. Our findings also extend the list of soluble photoswitchable inhibitors of NMDA receptors. While the site(s) and mechanisms of action are unclear, the effect of DENAQ demonstrates strong pH dependence. At acidic pH values, DENAQ potentiates both NMDA and AMPA receptors.


Assuntos
Compostos de Amônio Quaternário , Receptores de N-Metil-D-Aspartato , Animais , Compostos Azo , Compostos de Amônio Quaternário/farmacologia , Ratos , Receptores de AMPA , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico
4.
Materials (Basel) ; 13(23)2020 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-33260836

RESUMO

In this paper, we propose a fast and simple approach for the fabrication of the electrocatalytically active ruthenium-containing microstructures using a laser-induced metal deposition technique. The results of scanning electron microscopy and electrical impedance spectroscopy (EIS) demonstrate that the fabricated ruthenium-based microelectrode had a highly developed surface composed of 10 µm pores and 10 nm zigzag cracks. The fabricated material exhibited excellent electrochemical properties toward non-enzymatic dopamine sensing, including high sensitivity (858.5 and 509.1 µA mM-1 cm-2), a low detection limit (0.13 and 0.15 µM), as well as good selectivity and stability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...