Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 13(4)2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36839034

RESUMO

The catalytic oxidation of CO is probably the most investigated reaction in the literature, for decades, because of its extended environmental and fundamental importance. In this paper, the oxidation of CO on La1-xSrxMnO3 perovskites (LSMx), either unloaded or loaded with dispersed Ir nanoparticles (Ir/LSMx), was studied in the temperature range 100-450 °C under excess O2 conditions (1% CO + 5% O2). The perovskites, of the type La1-xSrxMnO3 (x = 0.0, 0.3, 0.5 and 0.7), were prepared by the coprecipitation method. The physicochemical and structural properties of both the LSMx and the homologous Ir/LSMx catalysts were evaluated by various techniques (XRD, N2 sorption-desorption by BET-BJH, H2-TPR and H2-Chem), in order to better understand the structure-activity-stability correlations. The effect of preoxidation/prereduction/aging of the catalysts on their activity and stability was also investigated. Results revealed that both LSMx and Ir/LSMx are effective for CO oxidation, with the latter being superior to the former. In both series of materials, increasing the substitution of La by Sr in the composition of the perovskite resulted to a gradual suppression of their CO oxidation activity when these were prereduced; the opposite was true for preoxidized samples. Inverse hysteresis phenomena in activity were observed during heating/cooling cycles on the prereduced Ir/LSMx catalysts with the loop amplitude narrowing with increasing Sr-content in LSMx. Oxidative thermal sintering experiments at high temperatures revealed excellent antisintering behavior of Ir nanoparticles supported on LSMx, resulting from perovskite's favorable antisintering properties of high oxygen storage capacity and surface oxygen vacancies.

2.
Ecol Evol ; 11(24): 17734-17743, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35003635

RESUMO

In the Mediterranean, Paracentrotus lividus and Sphaerechinus granularis are important drivers of benthic ecosystems, often coexisting in sublittoral communities. However, the introduction of the invasive diadematoid Diadema setosum, which utilizes venomous spines, may affect these communities. To describe the mechanical properties of the test and spines of these three species, specimens were collected in winter of 2019 from the sublittoral zone of the Dodecanese island complex, southeastern Aegean Sea. This region serves as a gateway for invasive species to the Mediterranean Sea. Crushing test was conducted on live individuals, while 3-point bending test was used to estimate spine stiffness. Porosity and mineralogy of the test and spine, thickness of the test, and breaking length of the spine were measured and compared, while the microstructural architecture was also determined. The test of S. granularis was the most robust (194.35 ± 59.59 N), while the spines of D. setosum (4.76 ± 2.13 GPa) exhibited highest flexibility. Increased porosity and thickness of the test were related to increased robustness, whereas increased flexibility of the spine was attributed to high porosity, indicating that porosity in the skeleton plays a key role in preventing fracture. The spines of S. granularis exhibited highest length after fracture % (71.54 ± 5.5%). D. setosum exhibited higher values of Mg concentration in the test (10%) compared with the spines (4%). For the first time, the mineralogy of an invasive species is compared with its native counterpart, while a comparison of the mechanical properties of different species of the same ecosystem also takes place. This study highlights different ways, in which sea urchins utilize their skeleton and showcases the ecological significance of these adaptations, one of which is the different ways of utilization of the skeleton for defensive purposes, while the other is the ability of D. setosum to decrease the Mg % of its skeleton degrading its mechanical properties, without compromising its defense, by depending on venomous bearing spines. This enables this species to occupy not only tropical habitats, where it is indigenous, but also temperate like the eastern Mediterranean, which it has recently invaded.

3.
Animals (Basel) ; 10(8)2020 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-32759777

RESUMO

In the Mediterranean Sea, the species Arbacia lixula, Paracentrotus lividus and Sphaerechinus granularis often coexist, occupying different subareas of the same habitat. The mechanical and chemical properties of their calcitic skeletons are affected both by their microstructural morphology and chemical composition. The present study describes the main morphologic features and the possible temporal differences in elemental composition of the test and spines of the three species, while also determining the molar ratio of each element of their crystalline phase. Scanning electron microscopy showed major differences in the ultrastructure of the spines, while minor differences in the test were also noticed. More specifically, the spines of all three sea urchins possess wedges, however A. lixula exhibits bridges connecting each wedge, while barbs are observed in the wedges of S. granularis. The spines of P. lividus are devoid of both microstructures. Secondary tubercles are absent in the test of A. lixula, while the tests and spines of all three species are characterized by different superficial stereom. Energy dispersive x-ray spectroscopy detected that Ca, Mg, S, Na and Cl were present in all specimen. Mg and Mg/Ca showed significant differences between species both in test and spines with S. granularis having the highest concentration. The spines of P. lividus exhibited lowest values between all species. Differences between spines and test were observed in all elements for P. lividus except S. A. lixula exhibited different concentrations between test and spines for Ca, Mg and Mg/Ca, whereas S. granularis for Mg, Cl and Mg/Ca. Finally, temporal differences for Ca were observed in the test of P. lividus and the spines of S. granularis, for Mg in test of S. granularis, for S in the spines of A. lixula and the test and spine of S. granularis, for Na in the test of P. lividus and A. lixula and for Cl and Mg/Ca in the test P. lividus. Powder X-ray diffractometry determined that, out of all three species, the spines of P. lividus contained the least Mg, while the test of the same species exhibited higher Mg concentration compared to A. lixula and S. granularis. The current study, although not labeling the specimens attempts to estimate potential time-related elemental differences among other results. These may occur due to changes in abiotic factors, probably water temperature, salinity and/or pH. Divergence in food preference and food availability may also play a key role in possible temporal differences the skeletons of these species.

4.
Waste Manag ; 90: 46-58, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-31088673

RESUMO

This study investigates an innovative approach for the valorization of specific wastes generated from the energy sector and the production of glass-ceramics. The wastes used were photovoltaic (P/V) glass, produced from the renewable energy sector, and lignite fly ash, produced from the conventional energy sector. The process first involved the production of glass after melting specific mixtures of wastes, namely (i) 70% P/V glass and 30% lignite fly ash, and (ii) 80% P/V glass and 20% lignite fly ash, at 1200 °C for 1 h as revealed by the use of a heating microscope. The results indicated that the P/V glass, as a sodium-potassium-rich inorganic waste, reduces energy requirements of the melting process. The produced glass was then used for the production of glass-ceramics. Dense and homogeneous glass-ceramics, exhibiting high chemical stability and no toxicity, were produced after controlled thermal treatment of glass at 800 °C. The mechanical (compressive strength, Vickers hardness) and physical (open porosity, bulk density and water absorption) properties of the produced glass-ceramics were evaluated. X-ray diffraction (XRD) and Energy Dispersive X-ray fluorescence (ED-XRF) were used for the characterization of the raw materials and the produced glass-ceramics. Scanning electron microscopy (SEM) provided further insights on the microstructure of the final products. The properties of the produced glass-ceramics, namely water absorption and compressive strength, render them suitable for applications in the construction industry. The waste valorization approach followed in this study is in line with the principles of circular economy.


Assuntos
Cinza de Carvão , Carvão Mineral , Cerâmica , Vidro , Microscopia Eletrônica de Varredura , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...