Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Vaccine X ; 8: 100102, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34195600

RESUMO

A novel, genetically-stabilized type 2 oral polio vaccine (nOPV2), developed to assist in the global polio eradication program, was recently the first-ever vaccine granted Emergency Use Listing by the WHO. Lot release tests for this vaccine included-for the first time to our knowledge-the assessment of genetic heterogeneity using next-generation sequencing (NGS). NGS ensures that the genetically-modified regions of the vaccine virus genome remain as designed and that levels of polymorphisms which may impact safety or efficacy are controlled during routine production. The variants present in nOPV2 lots were first assessed for temperature sensitivity and neurovirulence using molecular clones to inform which polymorphisms warranted formal evaluation during lot release. The novel use of NGS as a lot release test required formal validation of the method. Analysis of an nOPV2 lot spiked with the parental Sabin-2 strain enabled performance characteristics of the method to be assessed simultaneously at over 40 positions in the genome. These characteristics included repeatability and intermediate precision of polymorphism measurement, linearity of both spike-induced and nOPV2 lot-specific polymorphisms, and the limit-of-detection of spike-induced polymorphisms. The performance characteristics of the method met pre-defined criteria for 34 spike-induced polymorphic sites and 8 polymorphisms associated with the nOPV2 preparation; these sites collectively spanned most of the viral genome. Finally, the co-location of variants of interest on genomes was evaluated, with implications for the interpretation of NGS discussed.

2.
PLoS Biol ; 18(11): e3000904, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33156822

RESUMO

There is a great need for antiviral drugs to treat enterovirus (EV) and rhinovirus (RV) infections, which can be severe and occasionally life-threatening. The conserved nonstructural protein 2C, which is an AAA+ ATPase, is a promising target for drug development. Here, we present a structure-activity relationship study of a previously identified compound that targets the 2C protein of EV-A71 and several EV-B species members, but not poliovirus (PV) (EV-C species). This compound is structurally related to the Food and Drug Administration (FDA)-approved drug fluoxetine-which also targets 2C-but has favorable chemical properties. We identified several compounds with increased antiviral potency and broadened activity. Four compounds showed broad-spectrum EV and RV activity and inhibited contemporary strains of emerging EVs of public health concern, including EV-A71, coxsackievirus (CV)-A24v, and EV-D68. Importantly, unlike (S)-fluoxetine, these compounds are no longer neuroactive. By raising resistant EV-A71, CV-B3, and EV-D68 variants against one of these inhibitors, we identified novel 2C resistance mutations. Reverse engineering of these mutations revealed a conserved mechanism of resistance development. Resistant viruses first acquired a mutation in, or adjacent to, the α2 helix of 2C. This mutation disrupted compound binding and provided drug resistance, but this was at the cost of viral fitness. Additional mutations at distantly localized 2C residues were then acquired to increase resistance and/or to compensate for the loss of fitness. Using computational methods to identify solvent accessible tunnels near the α2 helix in the EV-A71 and PV 2C crystal structures, a conserved binding pocket of the inhibitors is proposed.


Assuntos
Antivirais/farmacologia , Proteínas de Transporte/efeitos dos fármacos , Enterovirus/efeitos dos fármacos , Proteínas não Estruturais Virais/efeitos dos fármacos , Antígenos Virais , Proteínas de Transporte/metabolismo , Descoberta de Drogas/métodos , Enterovirus/patogenicidade , Infecções por Enterovirus/virologia , Fluoxetina/farmacologia , Células HeLa , Humanos , Relação Estrutura-Atividade , Proteínas não Estruturais Virais/metabolismo , Replicação Viral
3.
Nat Commun ; 11(1): 4332, 2020 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-32859902

RESUMO

The group of enteroviruses contains many important pathogens for humans, including poliovirus, coxsackievirus, rhinovirus, as well as newly emerging global health threats such as EV-A71 and EV-D68. Here, we describe an unbiased, system-wide and time-resolved analysis of the proteome and phosphoproteome of human cells infected with coxsackievirus B3. Of the ~3,200 proteins quantified throughout the time course, a large amount (~25%) shows a significant change, with the majority being downregulated. We find ~85% of the detected phosphosites to be significantly regulated, implying that most changes occur at the post-translational level. Kinase-motif analysis reveals temporal activation patterns of certain protein kinases, with several CDKs/MAPKs immediately active upon the infection, and basophilic kinases, ATM, and ATR engaging later. Through bioinformatics analysis and dedicated experiments, we identify mTORC1 signalling as a major regulation network during enterovirus infection. We demonstrate that inhibition of mTORC1 activates TFEB, which increases expression of lysosomal and autophagosomal genes, and that TFEB activation facilitates the release of virions in extracellular vesicles via secretory autophagy. Our study provides a rich framework for a system-level understanding of enterovirus-induced perturbations at the protein and signalling pathway levels, forming a base for the development of pharmacological inhibitors to treat enterovirus infections.


Assuntos
Infecções por Coxsackievirus/metabolismo , Interações Hospedeiro-Patógeno/fisiologia , Proteoma/análise , Animais , Autofagia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Linhagem Celular , Sobrevivência Celular , Enterovirus/fisiologia , Enterovirus Humano B/fisiologia , Técnicas de Inativação de Genes , Células HeLa , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina , Fosforilação , Transdução de Sinais , Proteínas Virais/metabolismo
4.
Antiviral Res ; 178: 104781, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32234539

RESUMO

Enteroviruses (EV) are a group of positive-strand RNA (+RNA) viruses that include many important human pathogens (e.g. poliovirus, coxsackievirus, echovirus, numbered enteroviruses and rhinoviruses). Fluoxetine was identified in drug repurposing screens as potent inhibitor of enterovirus B and enterovirus D replication. In this paper we are reporting the synthesis and the antiviral effect of a series of fluoxetine analogues. The results obtained offer a preliminary insight into the structure-activity relationship of its chemical scaffold and confirm the importance of the chiral configuration. We identified a racemic fluoxetine analogue, 2b, which showed a similar antiviral activity compared to (S)-fluoxetine. Investigating the stereochemistry of 2b revealed that the S-enantiomer exerts potent antiviral activity and increased the antiviral spectrum compared to the racemic mixture of 2b. In line with the observed antiviral effect, the S-enantiomer displayed a dose-dependent shift in the melting temperature in thermal shift assays, indicative for direct binding to the recombinant 2C protein.


Assuntos
Antivirais/farmacologia , Proteínas de Transporte/antagonistas & inibidores , Enterovirus Humano B/efeitos dos fármacos , Enterovirus Humano D/efeitos dos fármacos , Fluoxetina/análogos & derivados , Proteínas não Estruturais Virais/antagonistas & inibidores , Animais , Antivirais/síntese química , Antivirais/química , Antivirais/metabolismo , Proteínas de Transporte/metabolismo , Linhagem Celular , Efeito Citopatogênico Viral/efeitos dos fármacos , Enterovirus Humano B/fisiologia , Enterovirus Humano D/fisiologia , Fluoxetina/química , Fluoxetina/metabolismo , Fluoxetina/farmacologia , Células HeLa , Humanos , Estereoisomerismo , Relação Estrutura-Atividade , Proteínas não Estruturais Virais/metabolismo
5.
EMBO Rep ; 21(2): e48441, 2020 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-31829496

RESUMO

The lipid kinase PI4KB, which generates phosphatidylinositol 4-phosphate (PI4P), is a key enzyme in regulating membrane transport and is also hijacked by multiple picornaviruses to mediate viral replication. PI4KB can interact with multiple protein binding partners, which are differentially manipulated by picornaviruses to facilitate replication. The protein c10orf76 is a PI4KB-associated protein that increases PI4P levels at the Golgi and is essential for the viral replication of specific enteroviruses. We used hydrogen-deuterium exchange mass spectrometry to characterize the c10orf76-PI4KB complex and reveal that binding is mediated by the kinase linker of PI4KB, with formation of the heterodimeric complex modulated by PKA-dependent phosphorylation. Complex-disrupting mutations demonstrate that PI4KB is required for membrane recruitment of c10orf76 to the Golgi, and that an intact c10orf76-PI4KB complex is required for the replication of c10orf76-dependent enteroviruses. Intriguingly, c10orf76 also contributed to proper Arf1 activation at the Golgi, providing a putative mechanism for the c10orf76-dependent increase in PI4P levels at the Golgi.


Assuntos
Enterovirus , Animais , Enterovirus/genética , Enterovirus/metabolismo , Complexo de Golgi/metabolismo , Fosfatos de Fosfatidilinositol , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Ligação Proteica , Células Sf9 , Replicação Viral
6.
PLoS Pathog ; 15(8): e1007962, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31381608

RESUMO

Enteroviruses, members of the family of picornaviruses, are the most common viral infectious agents in humans causing a broad spectrum of diseases ranging from mild respiratory illnesses to life-threatening infections. To efficiently replicate within the host cell, enteroviruses hijack several host factors, such as ACBD3. ACBD3 facilitates replication of various enterovirus species, however, structural determinants of ACBD3 recruitment to the viral replication sites are poorly understood. Here, we present a structural characterization of the interaction between ACBD3 and the non-structural 3A proteins of four representative enteroviruses (poliovirus, enterovirus A71, enterovirus D68, and rhinovirus B14). In addition, we describe the details of the 3A-3A interaction causing the assembly of the ACBD3-3A heterotetramers and the interaction between the ACBD3-3A complex and the lipid bilayer. Using structure-guided identification of the point mutations disrupting these interactions, we demonstrate their roles in the intracellular localization of these proteins, recruitment of downstream effectors of ACBD3, and facilitation of enterovirus replication. These structures uncovered a striking convergence in the mechanisms of how enteroviruses and kobuviruses, members of a distinct group of picornaviruses that also rely on ACBD3, recruit ACBD3 and its downstream effectors to the sites of viral replication.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Interações Hospedeiro-Patógeno , Proteínas de Membrana/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Picornaviridae/fisiologia , Proteínas Virais/metabolismo , Replicação Viral , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/genética , Sequência de Aminoácidos , Cristalização , Cristalografia por Raios X , Células HEK293 , Humanos , Proteínas de Membrana/química , Proteínas de Membrana/genética , Modelos Moleculares , Mutação , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Ligação Proteica , Conformação Proteica , Homologia de Sequência , Proteínas Virais/química , Proteínas Virais/genética
7.
ACS Infect Dis ; 5(9): 1609-1623, 2019 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-31305993

RESUMO

Enteroviruses (family Picornaviridae) comprise a large group of human pathogens against which no licensed antiviral therapy exists. Drug-repurposing screens uncovered the FDA-approved drug fluoxetine as a replication inhibitor of enterovirus B and D species. Fluoxetine likely targets the nonstructural viral protein 2C, but detailed mode-of-action studies are missing because structural information on 2C of fluoxetine-sensitive enteroviruses is lacking. We here show that broad-spectrum anti-enteroviral activity of fluoxetine is stereospecific concomitant with binding to recombinant 2C. (S)-Fluoxetine inhibits with a 5-fold lower 50% effective concentration (EC50) than racemic fluoxetine. Using a homology model of 2C of the fluoxetine-sensitive enterovirus coxsackievirus B3 (CVB3) based upon a recently elucidated structure of a fluoxetine-insensitive enterovirus, we predicted stable binding of (S)-fluoxetine. Structure-guided mutations disrupted binding and rendered coxsackievirus B3 (CVB3) resistant to fluoxetine. The study provides new insights into the anti-enteroviral mode-of-action of fluoxetine. Importantly, using only (S)-fluoxetine would allow for lower dosing in patients, thereby likely reducing side effects.


Assuntos
Proteínas de Transporte/metabolismo , Enterovirus Humano B/fisiologia , Enterovirus Humano D/fisiologia , Fluoxetina/farmacologia , Proteínas não Estruturais Virais/metabolismo , Replicação Viral/efeitos dos fármacos , Proteínas de Transporte/química , Proteínas de Transporte/genética , Reposicionamento de Medicamentos , Enterovirus Humano B/efeitos dos fármacos , Enterovirus Humano D/efeitos dos fármacos , Células HeLa , Humanos , Modelos Moleculares , Estrutura Molecular , Mutação , Ligação Proteica , Conformação Proteica , Homologia Estrutural de Proteína , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/genética
8.
mBio ; 10(1)2019 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-30755512

RESUMO

The enterovirus genus of the picornavirus family includes a large number of important human pathogens such as poliovirus, coxsackievirus, enterovirus A71, and rhinoviruses. Like all other positive-strand RNA viruses, genome replication of enteroviruses occurs on rearranged membranous structures called replication organelles (ROs). Phosphatidylinositol 4-kinase IIIß (PI4KB) is required by all enteroviruses for RO formation. The enteroviral 3A protein recruits PI4KB to ROs, but the exact mechanism remains elusive. Here, we investigated the role of acyl-coenzyme A binding domain containing 3 (ACBD3) in PI4KB recruitment upon enterovirus replication using ACBD3 knockout (ACBD3KO) cells. ACBD3 knockout impaired replication of representative viruses from four enterovirus species and two rhinovirus species. PI4KB recruitment was not observed in the absence of ACBD3. The lack of ACBD3 also affected the localization of individually expressed 3A, causing 3A to localize to the endoplasmic reticulum instead of the Golgi. Reconstitution of wild-type (wt) ACBD3 restored PI4KB recruitment and 3A localization, while an ACBD3 mutant that cannot bind to PI4KB restored 3A localization, but not virus replication. Consistently, reconstitution of a PI4KB mutant that cannot bind ACBD3 failed to restore virus replication in PI4KBKO cells. Finally, by reconstituting ACBD3 mutants lacking specific domains in ACBD3KO cells, we show that acyl-coenzyme A binding (ACB) and charged-amino-acid region (CAR) domains are dispensable for 3A-mediated PI4KB recruitment and efficient enterovirus replication. Altogether, our data provide new insight into the central role of ACBD3 in recruiting PI4KB by enterovirus 3A and reveal the minimal domains of ACBD3 involved in recruiting PI4KB and supporting enterovirus replication.IMPORTANCE Similar to all other positive-strand RNA viruses, enteroviruses reorganize host cellular membranes for efficient genome replication. A host lipid kinase, PI4KB, plays an important role in this membrane rearrangement. The exact mechanism of how enteroviruses recruit PI4KB was unclear. Here, we revealed a role of a Golgi-residing protein, ACBD3, as a mediator of PI4KB recruitment upon enterovirus replication. ACBD3 is responsible for proper localization of enteroviral 3A proteins in host cells, which is important for 3A to recruit PI4KB. By testing ACBD3 and PI4KB mutants that abrogate the ACBD3-PI4KB interaction, we showed that this interaction is crucial for enterovirus replication. The importance of specific domains of ACBD3 was evaluated for the first time, and the domains that are essential for enterovirus replication were identified. Our findings open up a possibility for targeting ACBD3 or its interaction with enteroviruses as a novel strategy for the development of broad-spectrum antienteroviral drugs.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Enterovirus Humano A/fisiologia , Interações Hospedeiro-Patógeno , Proteínas de Membrana/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Proteínas Virais/metabolismo , Replicação Viral , Proteínas Adaptadoras de Transdução de Sinal/genética , Linhagem Celular , Técnicas de Inativação de Genes , Teste de Complementação Genética , Humanos , Proteínas de Membrana/genética , Ligação Proteica
9.
Antiviral Res ; 157: 68-79, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29981375

RESUMO

Dengue virus (DENV) is associated with an estimated 390 million infections per year, occurring across approximately 100 countries in tropical and sub-tropical regions. To date, there are no antiviral drugs or specific therapies to treat DENV infection. Posaconazole and itraconazole are potent antifungal drugs that inhibit ergosterol biosynthesis in fungal cells, but also target a number of human proteins. Here, we show that itraconazole and posaconazole have antiviral activity against DENV. Posaconazole inhibited replication of multiple serotypes of DENV and the related flavivirus Zika virus, and reduced viral RNA replication, but not translation of the viral genome. We used a combination of knockdown and drug sensitization assays to define the molecular target of posaconazole that mediates its antiviral activity. We found that knockdown of oxysterol-binding protein (OSBP) inhibited DENV replication. Moreover, knockdown of OSBP, but not other known targets of posaconazole, enhanced the inhibitory effect of posaconazole. Our findings imply OSBP as a potential target for the development of antiviral compounds against DENV.


Assuntos
Antivirais/farmacologia , Vírus da Dengue/efeitos dos fármacos , Reposicionamento de Medicamentos , Receptores de Esteroides/antagonistas & inibidores , Triazóis/farmacologia , Replicação Viral/efeitos dos fármacos , Animais , Antifúngicos/farmacologia , Chlorocebus aethiops , Vírus da Dengue/crescimento & desenvolvimento , Células HeLa , Humanos , Itraconazol/farmacologia , Células Vero , Zika virus/efeitos dos fármacos , Zika virus/crescimento & desenvolvimento
10.
Nat Rev Microbiol ; 16(6): 391, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29725113

RESUMO

In the version of this Review originally published, co-author Hendrik Jan Thibaut's name was incorrectly indexed as "Jan Thibaut, H". It should have appeared as "Thibaut, HJ". This has now been corrected in all versions of the Review. The publisher apologizes to the authors and to readers for this error.

11.
Antiviral Res ; 156: 55-63, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29807040

RESUMO

Itraconazole (ITZ) is a well-known, FDA-approved antifungal drug that is also in clinical trials for its anticancer activity. ITZ exerts its anticancer activity through several disparate targets and pathways. ITZ inhibits angiogenesis by hampering the functioning of the vascular endothelial growth receptor 2 (VEGFR2) and by indirectly inhibiting mTOR signaling. Furthermore, ITZ directly inhibits the growth of several types of tumor cells by antagonizing Hedgehog signaling. Recently, we reported that ITZ also has broad-spectrum antiviral activity against enteroviruses, cardioviruses and hepatitis C virus, independent of established ITZ-activities but instead via a novel target, oxysterol-binding protein (OSBP), a cellular lipid shuttling protein. In this study, we analyzed which structural features of ITZ are important for the OSBP-mediated antiviral activity. The backbone structure, consisting of five rings, and the sec-butyl chain are important for antiviral activity, whereas the triazole moiety, which is critical for antifungal activity, is not. The features required for OSBP-mediated antiviral activity of ITZ overlap mostly with published features required for inhibition of VEGFR2 trafficking, but not Hh signaling. Furthermore, we use in silico studies to explore how ITZ could bind to OSBP. Our data show that several pharmacological activities of ITZ can be uncoupled, which is a critical step in the development of ITZ-based antiviral compounds with greater specificity and reduced off-target effects.


Assuntos
Antivirais/farmacologia , Itraconazol/farmacologia , Picornaviridae/efeitos dos fármacos , Receptores de Esteroides/metabolismo , Relação Estrutura-Atividade , Replicação Viral/efeitos dos fármacos , Antivirais/química , Células HeLa , Humanos , Itraconazol/química , Simulação de Dinâmica Molecular , Picornaviridae/fisiologia , Ligação Proteica
12.
Nat Rev Microbiol ; 16(6): 368-381, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29626210

RESUMO

The genus Enterovirus (EV) of the family Picornaviridae includes poliovirus, coxsackieviruses, echoviruses, numbered enteroviruses and rhinoviruses. These diverse viruses cause a variety of diseases, including non-specific febrile illness, hand-foot-and-mouth disease, neonatal sepsis-like disease, encephalitis, paralysis and respiratory diseases. In recent years, several non-polio enteroviruses (NPEVs) have emerged as serious public health concerns. These include EV-A71, which has caused epidemics of hand-foot-and-mouth disease in Southeast Asia, and EV-D68, which recently caused a large outbreak of severe lower respiratory tract disease in North America. Infections with these viruses are associated with severe neurological complications. For decades, most research has focused on poliovirus, but in recent years, our knowledge of NPEVs has increased considerably. In this Review, we summarize recent insights from enterovirus research with a special emphasis on NPEVs. We discuss virion structures, host-receptor interactions, viral uncoating and the recent discovery of a universal enterovirus host factor that is involved in viral genome release. Moreover, we briefly explain the mechanisms of viral genome replication, virion assembly and virion release, and describe potential targets for antiviral therapy. We reflect on how these recent discoveries may help the development of antiviral therapies and vaccines.


Assuntos
Antivirais/farmacologia , Infecções por Enterovirus/prevenção & controle , Infecções por Enterovirus/virologia , Enterovirus/fisiologia , Replicação Viral/fisiologia , Animais , Antivirais/uso terapêutico , Enterovirus/genética , Infecções por Enterovirus/tratamento farmacológico , Infecções por Enterovirus/epidemiologia , Regulação Viral da Expressão Gênica , Saúde Global , Humanos , Replicação Viral/genética
13.
Antiviral Res ; 140: 37-44, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28088354

RESUMO

The genus Enterovirus (e.g. poliovirus, coxsackievirus, rhinovirus) of the Picornaviridae family of positive-strand RNA viruses includes many important pathogens linked to a range of acute and chronic diseases for which no approved antiviral therapy is available. Targeting a step in the life cycle that is highly conserved provides an attractive strategy for developing broad-range inhibitors of enterovirus infection. A step that is currently explored as a target for the development of antivirals is the formation of replication organelles, which support replication of the viral genome. To build replication organelles, enteroviruses rewire cellular machinery and hijack lipid homeostasis pathways. For example, enteroviruses exploit the PI4KIIIß-PI4P-OSBP pathway to direct cholesterol to replication organelles. Here, we uncover that TTP-8307, a known enterovirus replication inhibitor, acts through the PI4KIIIß-PI4P-OSBP pathway by directly inhibiting OSBP activity. However, despite a shared mechanism of TTP-8307 with established OSBP inhibitors (itraconazole and OSW-1), we identify a number of notable differences between these compounds. The antiviral activity of TTP-8307 extends to other viruses that require OSBP, namely the picornavirus encephalomyocarditis virus and the flavivirus hepatitis C virus.


Assuntos
Antivirais/farmacologia , Benzamidas/farmacologia , Enterovirus/efeitos dos fármacos , Imidazóis/farmacologia , Receptores de Esteroides/antagonistas & inibidores , Replicação Viral/efeitos dos fármacos , Colestenonas/farmacologia , Inibidores do Citocromo P-450 CYP3A/farmacologia , Genoma Viral/efeitos dos fármacos , Células HeLa , Humanos , Itraconazol/farmacologia , Fosfotransferases (Aceptor do Grupo Álcool)/efeitos dos fármacos , Poliovirus/efeitos dos fármacos , Receptores de Esteroides/metabolismo , Rhinovirus/efeitos dos fármacos , Saponinas/farmacologia
15.
Antimicrob Agents Chemother ; 60(10): 6402-6, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27480860

RESUMO

Encephalomyocarditis virus (EMCV), like hepatitis C virus (HCV), requires phosphatidylinositol 4-kinase IIIα (PI4KA) for genome replication. Here, we demonstrate that tyrphostin AG1478, a known epidermal growth factor receptor (EGFR) inhibitor, also inhibits PI4KA activity, both in vitro and in cells. AG1478 impaired replication of EMCV and HCV but not that of an EMCV mutant previously shown to escape PI4KA inhibition. This work uncovers novel cellular and antiviral properties of AG1478, a compound previously regarded only as a cancer chemotherapy agent.


Assuntos
1-Fosfatidilinositol 4-Quinase/antagonistas & inibidores , Antivirais/farmacologia , Vírus da Encefalomiocardite/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Hepacivirus/efeitos dos fármacos , Quinazolinas/farmacologia , Tirfostinas/farmacologia , 1-Fosfatidilinositol 4-Quinase/metabolismo , Relação Dose-Resposta a Droga , Vírus da Encefalomiocardite/genética , Vírus da Encefalomiocardite/fisiologia , Células HeLa/efeitos dos fármacos , Células HeLa/virologia , Hepacivirus/fisiologia , Humanos , Terapia de Alvo Molecular/métodos , Mutação , Replicação Viral/efeitos dos fármacos
16.
mSphere ; 1(3)2016.
Artigo em Inglês | MEDLINE | ID: mdl-27303747

RESUMO

Positive-strand RNA [(+)RNA] viruses are true masters of reprogramming host lipid trafficking and synthesis to support virus genome replication. Via their membrane-associated 3A protein, picornaviruses of the genus Enterovirus (e.g., poliovirus, coxsackievirus, and rhinovirus) subvert Golgi complex-localized phosphatidylinositol 4-kinase IIIß (PI4KB) to generate "replication organelles" (ROs) enriched in phosphatidylinositol 4-phosphate (PI4P). PI4P lipids serve to accumulate oxysterol-binding protein (OSBP), which subsequently transfers cholesterol to the ROs in a PI4P-dependent manner. Single-point mutations in 3A render enteroviruses resistant to both PI4KB and OSBP inhibition, indicating coupled dependency on these host factors. Recently, we showed that encephalomyocarditis virus (EMCV), a picornavirus that belongs to the Cardiovirus genus, also builds PI4P/cholesterol-enriched ROs. Like the hepatitis C virus (HCV) of the Flaviviridae family, it does so by hijacking the endoplasmic reticulum (ER)-localized phosphatidylinositol 4-kinase IIIα (PI4KA). Here we provide genetic evidence for the critical involvement of EMCV protein 3A in this process. Using a genetic screening approach, we selected EMCV mutants with single amino acid substitutions in 3A, which rescued RNA virus replication upon small interfering RNA (siRNA) knockdown or pharmacological inhibition of PI4KA. In the presence of PI4KA inhibitors, the mutants no longer induced PI4P, OSBP, or cholesterol accumulation at ROs, which aggregated into large cytoplasmic clusters. In contrast to the enterovirus escape mutants, we observed little if any cross-resistance of EMCV mutants to OSBP inhibitors, indicating an uncoupled level of dependency of their RNA replication on PI4KA and OSBP activities. This report may contribute to a better understanding of the roles of PI4KA and OSBP in membrane modifications induced by (+)RNA viruses. IMPORTANCE Positive-strand RNA viruses modulate lipid homeostasis to generate unique, membranous "replication organelles" (ROs) where viral genome replication takes place. Hepatitis C virus, encephalomyocarditis virus (EMCV), and enteroviruses have convergently evolved to hijack host phosphatidylinositol 4-kinases (PI4Ks), which produce PI4P lipids, to recruit oxysterol-binding protein (OSBP), a PI4P-binding protein that shuttles cholesterol to ROs. Consistent with the proposed coupling between PI4K and OSBP, enterovirus mutants resistant to PI4KB inhibitors are also resistant to OSBP inhibitors. Here, we show that EMCV can replicate without accumulating PI4P/cholesterol at ROs, by acquiring point mutations in nonstructural protein 3A. Remarkably, the mutations conferred resistance to PI4K but not OSBP inhibitors, thereby uncoupling the levels of dependency of EMCV RNA replication on PI4K and OSBP. This work may contribute to a deeper understanding of the roles of PI4K/PI4P and OSBP/cholesterol in membrane modifications induced by positive-strand RNA viruses.

17.
Trends Microbiol ; 24(7): 535-546, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27020598

RESUMO

All viruses that carry a positive-sense RNA genome (+RNA), such as picornaviruses, hepatitis C virus, dengue virus, and SARS- and MERS-coronavirus, confiscate intracellular membranes of the host cell to generate new compartments (i.e., replication organelles) for amplification of their genome. Replication organelles (ROs) are membranous structures that not only harbor viral proteins but also contain a specific array of hijacked host factors that create a unique lipid microenvironment optimal for genome replication. While some lipids may be locally synthesized de novo, other lipids are shuttled towards ROs. In picornavirus-infected cells, lipids are exchanged at membrane contact sites between ROs and other organelles. In this paper, we review recent advances in our understanding of how picornaviruses exploit host membrane contact site machinery to generate ROs, a mechanism that is used by some other +RNA viruses as well.


Assuntos
Enterovirus/crescimento & desenvolvimento , Enterovirus/metabolismo , Membranas Intracelulares/virologia , Metabolismo dos Lipídeos/fisiologia , Replicação Viral/fisiologia , Enterovirus/patogenicidade , Genoma Viral/genética , Humanos , Lipídeos , Replicação Viral/genética
18.
PLoS Pathog ; 11(9): e1005185, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26406250

RESUMO

Cardioviruses, including encephalomyocarditis virus (EMCV) and the human Saffold virus, are small non-enveloped viruses belonging to the Picornaviridae, a large family of positive-sense RNA [(+)RNA] viruses. All (+)RNA viruses remodel intracellular membranes into unique structures for viral genome replication. Accumulating evidence suggests that picornaviruses from different genera use different strategies to generate viral replication organelles (ROs). For instance, enteroviruses (e.g. poliovirus, coxsackievirus, rhinovirus) rely on the Golgi-localized phosphatidylinositol 4-kinase III beta (PI4KB), while cardioviruses replicate independently of the kinase. By which mechanisms cardioviruses develop their ROs is currently unknown. Here we show that cardioviruses manipulate another PI4K, namely the ER-localized phosphatidylinositol 4-kinase III alpha (PI4KA), to generate PI4P-enriched ROs. By siRNA-mediated knockdown and pharmacological inhibition, we demonstrate that PI4KA is an essential host factor for EMCV genome replication. We reveal that the EMCV nonstructural protein 3A interacts with and is responsible for PI4KA recruitment to viral ROs. The ensuing phosphatidylinositol 4-phosphate (PI4P) proved important for the recruitment of oxysterol-binding protein (OSBP), which delivers cholesterol to EMCV ROs in a PI4P-dependent manner. PI4P lipids and cholesterol are shown to be required for the global organization of the ROs and for viral genome replication. Consistently, inhibition of OSBP expression or function efficiently blocked EMCV RNA replication. In conclusion, we describe for the first time a cellular pathway involved in the biogenesis of cardiovirus ROs. Remarkably, the same pathway was reported to promote formation of the replication sites of hepatitis C virus, a member of the Flaviviridae family, but not other picornaviruses or flaviviruses. Thus, our results highlight the convergent recruitment by distantly related (+)RNA viruses of a host lipid-modifying pathway underlying formation of viral replication sites.


Assuntos
Infecções por Cardiovirus/metabolismo , Vírus da Encefalomiocardite/fisiologia , Interações Hospedeiro-Parasita/fisiologia , Metabolismo dos Lipídeos/fisiologia , Replicação Viral/fisiologia , 1-Fosfatidilinositol 4-Quinase/metabolismo , Animais , Western Blotting , Hepacivirus/fisiologia , Humanos , Imunoprecipitação , Microscopia de Fluorescência , Fosfatos de Fosfatidilinositol/metabolismo , Picornaviridae , Vírus de RNA , RNA Interferente Pequeno , Receptores de Esteroides/metabolismo , Transfecção
19.
Traffic ; 16(5): 439-60, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25754025

RESUMO

The hydrophobic molecules of the metabolome - also named the lipidome - constitute a major part of the entire metabolome. Novel technologies show the existence of a staggering number of individual lipid species, the biological functions of which are, with the exception of only a few lipid species, unknown. Much can be learned from pathogens that have evolved to take advantage of the complexity of the lipidome to escape the immune system of the host organism and to allow their survival and replication. Different types of pathogens target different lipids as shown in interaction maps, allowing visualization of differences between different types of pathogens. Bacterial and viral pathogens target predominantly structural and signaling lipids to alter the cellular phenotype of the host cell. Fungal and parasitic pathogens have complex lipidomes themselves and target predominantly the release of polyunsaturated fatty acids from the host cell lipidome, resulting in the generation of eicosanoids by either the host cell or the pathogen. Thus, whereas viruses and bacteria induce predominantly alterations in lipid metabolites at the host cell level, eukaryotic pathogens focus on interference with lipid metabolites affecting systemic inflammatory reactions that are part of the immune system. A better understanding of the interplay between host-pathogen interactions will not only help elucidate the fundamental role of lipid species in cellular physiology, but will also aid in the generation of novel therapeutic drugs.


Assuntos
Fenômenos Fisiológicos Bacterianos , Fungos/fisiologia , Interações Hospedeiro-Patógeno/fisiologia , Metabolismo dos Lipídeos , Metaboloma , Fenômenos Fisiológicos Virais , Fenômenos Fisiológicos Bacterianos/genética , Doenças Transmissíveis/imunologia , Doenças Transmissíveis/microbiologia , Doenças Transmissíveis/virologia , Fungos/genética , Interações Hospedeiro-Patógeno/genética , Humanos , Interações Hidrofóbicas e Hidrofílicas , Imunidade Inata , Metabolismo dos Lipídeos/fisiologia , Metaboloma/fisiologia , Fenômenos Fisiológicos Virais/genética
20.
Antiviral Res ; 117: 110-4, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25752737

RESUMO

Enteroviruses, e.g., polio-, coxsackie- and rhinoviruses, constitute a large genus within the Picornaviridae family of positive-strand RNA viruses and include many important pathogens linked to a variety of acute and chronic diseases. Despite their huge medical and economic impact, no approved antiviral therapy is yet available. Recently, the oxysterol-binding protein (OSBP) was implicated as a host factor for enterovirus replication. Here, we investigated the antiviral activity of the natural compound OSW-1, a ligand of OSBP that is under investigation as an anti-cancer drug. OSW-1 potently inhibited the replication of all enteroviruses tested, with IC50 values in the low nanomolar range, acted at the genome replication stage and was effective in all tested cell types of three different species. Importantly, OSBP overexpression rescued viral replication, demonstrating that the antiviral effect of OSW-1 is due to targeting OSBP. Together, we here report the anti-enterovirus activity of the natural anti-cancer compound OSW-1.


Assuntos
Antivirais/farmacologia , Colestenonas/farmacologia , Enterovirus/efeitos dos fármacos , Receptores de Esteroides/metabolismo , Saponinas/farmacologia , Replicação Viral/efeitos dos fármacos , Animais , Linhagem Celular , Chlorocebus aethiops , Enterovirus/crescimento & desenvolvimento , Genoma Viral/efeitos dos fármacos , Células HeLa , Humanos , Ligantes , Células Vero , Carga Viral/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...