Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genome Biol ; 25(1): 20, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38225637

RESUMO

CRISPR screens with single-cell transcriptomic readouts are a valuable tool to understand the effect of genetic perturbations including single nucleotide variants (SNVs) associated with diseases. Interpretation of these data is currently limited as genotypes cannot be accurately inferred from guide RNA identity alone. scSNV-seq overcomes this limitation by coupling single-cell genotyping and transcriptomics of the same cells enabling accurate and high-throughput screening of SNVs. Analysis of variants across the JAK1 gene with scSNV-seq demonstrates the importance of determining the precise genetic perturbation and accurately classifies clinically observed missense variants into three functional categories: benign, loss of function, and separation of function.


Assuntos
Perfilação da Expressão Gênica , RNA Guia de Sistemas CRISPR-Cas , Genótipo , Transcriptoma , Nucleotídeos , Análise de Célula Única , Sequenciamento de Nucleotídeos em Larga Escala
2.
Cancer Cell ; 41(2): 288-303.e6, 2023 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-36669486

RESUMO

Interferon-γ (IFN-γ) signaling mediates host responses to infection, inflammation and anti-tumor immunity. Mutations in the IFN-γ signaling pathway cause immunological disorders, hematological malignancies, and resistance to immune checkpoint blockade (ICB) in cancer; however, the function of most clinically observed variants remains unknown. Here, we systematically investigate the genetic determinants of IFN-γ response in colorectal cancer cells using CRISPR-Cas9 screens and base editing mutagenesis. Deep mutagenesis of JAK1 with cytidine and adenine base editors, combined with pathway-wide screens, reveal loss-of-function and gain-of-function mutations, including causal variants in hematological malignancies and mutations detected in patients refractory to ICB. We functionally validate variants of uncertain significance in primary tumor organoids, where engineering missense mutations in JAK1 enhanced or reduced sensitivity to autologous tumor-reactive T cells. We identify more than 300 predicted missense mutations altering IFN-γ pathway activity, generating a valuable resource for interpreting gene variant function.


Assuntos
Neoplasias Hematológicas , Neoplasias , Humanos , Interferon gama/genética , Interferon gama/metabolismo , Edição de Genes , Neoplasias/genética , Mutação , Transdução de Sinais/genética , Sistemas CRISPR-Cas
3.
Bioinformatics ; 36(5): 1484-1491, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31608923

RESUMO

MOTIVATION: Many methods have been developed to cluster genes on the basis of their changes in mRNA expression over time, using bulk RNA-seq or microarray data. However, single-cell data may present a particular challenge for these algorithms, since the temporal ordering of cells is not directly observed. One way to address this is to first use pseudotime methods to order the cells, and then apply clustering techniques for time course data. However, pseudotime estimates are subject to high levels of uncertainty, and failing to account for this uncertainty is liable to lead to erroneous and/or over-confident gene clusters. RESULTS: The proposed method, GPseudoClust, is a novel approach that jointly infers pseudotemporal ordering and gene clusters, and quantifies the uncertainty in both. GPseudoClust combines a recent method for pseudotime inference with non-parametric Bayesian clustering methods, efficient Markov Chain Monte Carlo sampling and novel subsampling strategies which aid computation. We consider a broad array of simulated and experimental datasets to demonstrate the effectiveness of GPseudoClust in a range of settings. AVAILABILITY AND IMPLEMENTATION: An implementation is available on GitHub: https://github.com/magStra/nonparametricSummaryPSM and https://github.com/magStra/GPseudoClust. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Algoritmos , Análise de Célula Única , Teorema de Bayes , Análise por Conglomerados , Cadeias de Markov
4.
Bioinformatics ; 35(4): 611-618, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30052778

RESUMO

MOTIVATION: A number of pseudotime methods have provided point estimates of the ordering of cells for scRNA-seq data. A still limited number of methods also model the uncertainty of the pseudotime estimate. However, there is still a need for a method to sample from complicated and multi-modal distributions of orders, and to estimate changes in the amount of the uncertainty of the order during the course of a biological development, as this can support the selection of suitable cells for the clustering of genes or for network inference. RESULTS: In applications to scRNA-seq data we demonstrate the potential of GPseudoRank to sample from complex and multi-modal posterior distributions and to identify phases of lower and higher pseudotime uncertainty during a biological process. GPseudoRank also correctly identifies cells precocious in their antiviral response and links uncertainty in the ordering to metastable states. A variant of the method extends the advantages of Bayesian modelling and MCMC to large droplet-based scRNA-seq datasets. AVAILABILITY AND IMPLEMENTATION: Our method is available on github: https://github.com/magStra/GPseudoRank. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Análise de Célula Única , Software , Teorema de Bayes , Análise por Conglomerados
5.
Spat Stat ; 20: 221-243, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-29492375

RESUMO

This paper investigates the adequacy of the matrix exponential spatial specifications (MESS) as an alternative to the widely used spatial autoregressive models (SAR). To provide as complete a picture as possible, we extend the analysis to all the main spatial models governed by matrix exponentials comparing them with their spatial autoregressive counterparts. We propose a new implementation of Bayesian parameter estimation for the MESS model with vague prior distributions, which is shown to be precise and computationally efficient. Our implementations also account for spatially lagged regressors. We further allow for location-specific heterogeneity, which we model by including spatial splines. We conclude by comparing the performances of the different model specifications in applications to a real data set and by running simulations. Both the applications and the simulations suggest that the spatial splines are a flexible and efficient way to account for spatial heterogeneities governed by unknown mechanisms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...