Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 9(28): eadg6638, 2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37450594

RESUMO

Membrane technologies that enable the efficient purification of impaired water sources are needed to address growing water scarcity. However, state-of-the-art engineered membranes are constrained by a universal, deleterious trade-off where membranes with high water permeability lack selectivity. Current membranes also poorly remove low-molecular weight neutral solutes and are vulnerable to degradation from oxidants used in water treatment. We report a water desalination technology that uses applied pressure to drive vapor transport through membranes with an entrapped air layer. Since separation occurs due to a gas-liquid phase change, near-complete rejection of dissolved solutes including sodium chloride, boron, urea, and N-nitrosodimethylamine is observed. Membranes fabricated with sub-200-nm-thick air layers showed water permeabilities that exceed those of commercial membranes without sacrificing salt rejection. We also find the air-trapping membranes tolerate exposure to chlorine and ozone oxidants. The results advance our understanding of evaporation behavior and facilitate high-throughput ultraselective separations.


Assuntos
Destilação , Purificação da Água , Permeabilidade , Gases , Purificação da Água/métodos , Membranas Artificiais
2.
Chem Sci ; 14(4): 751-770, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36755730

RESUMO

Polyamide reverse osmosis (PA-RO) membranes achieve remarkably high water permeability and salt rejection, making them a key technology for addressing water shortages through processes including seawater desalination and wastewater reuse. However, current state-of-the-art membranes suffer from challenges related to inadequate selectivity, fouling, and a poor ability of existing models to predict performance. In this Perspective, we assert that a molecular understanding of the mechanisms that govern selectivity and transport of PA-RO and other polymer membranes is crucial to both guide future membrane development efforts and improve the predictive capability of transport models. We summarize the current understanding of ion, water, and polymer interactions in PA-RO membranes, drawing insights from nanofiltration and ion exchange membranes. Building on this knowledge, we explore how these interactions impact the transport properties of membranes, highlighting assumptions of transport models that warrant further investigation to improve predictive capabilities and elucidate underlying transport mechanisms. We then underscore recent advances in in situ characterization techniques that allow for direct measurements of previously difficult-to-obtain information on hydrated polymer membrane properties, hydrated ion properties, and ion-water-membrane interactions as well as powerful computational and electrochemical methods that facilitate systematic studies of transport phenomena.

3.
Environ Sci Technol ; 57(5): 2129-2137, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36693171

RESUMO

Pressure-driven distillation (PD) is a novel desalination technology based on hydraulic pressure driving force and vapor transport across a hydrophobic porous membrane. In theory, PD offers near-perfect rejection for nonvolatile solutes, chlorine resistance, and the ability to decouple water and solute transport. Despite its advantages, pore wetting and the development of a reverse transmembrane temperature difference are potential critical concerns in PD, with the former compromising the salt rejection and the latter reducing or even eliminating the driving force for vapor transport. We herein present an analysis to evaluate the practical viability and membrane design principles of PD with a focus on the dependence of flux and salt rejection (SR) on membrane properties. By modeling the mass transfer in a PD process under different conditions, we arrive at two important conclusions. First, a practically detrimental reverse transmembrane temperature difference does not develop in PD under all relevant circumstances and is thus not a practical concern. Second, for a PD process to achieve an acceptable SR, the membrane pores should be at the nanometer scale with a highly uniform pore size distribution. This analysis demonstrates the practical viability of PD and provides the principles for designing robust and high-performance PD membranes.


Assuntos
Destilação , Purificação da Água , Cloreto de Sódio , Água/química , Molhabilidade , Temperatura , Membranas Artificiais
4.
Sci Adv ; 9(1): eade0413, 2023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-36598997

RESUMO

Desalination technologies using salt-rejecting membranes are a highly efficient tool to provide fresh water and augment existing water supplies. In recent years, numerous studies have worked to advance a variety of membrane processes with different membrane types and driving forces, but direct quantitative comparisons of these different technologies have led to confusing and contradictory conclusions in the literature. In this Review, we critically assess different membrane-based desalination technologies and provide a universal framework for comparing various driving forces and membrane types. To accomplish this, we first quantify the thermodynamic driving forces resulting from pressure, concentration, and temperature gradients. We then examine the resistances experienced by water molecules as they traverse liquid- and air-filled membranes. Last, we quantify water fluxes in each process for differing desalination scenarios. We conclude by synthesizing results from the literature and our quantitative analyses to compare desalination processes, identifying specific scenarios where each process has fundamental advantages.

5.
Environ Sci Technol ; 56(12): 7467-7483, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35549171

RESUMO

Membrane technologies using reverse osmosis (RO) and nanofiltration (NF) have been widely implemented in water purification and desalination processes. Separation between species at the molecular level is achievable in RO and NF membranes due to a complex and poorly understood combination of transport mechanisms that have attracted the attention of researchers within and beyond the membrane community for many years. Minimizing existing knowledge gaps in transport through these membranes can improve the sustainability of current water-treatment processes and expand the use of RO and NF membranes to other applications that require high selectivity between species. Since its establishment in 1949, and with growing popularity in recent years, Eyring's transition-state theory (TST) for transmembrane permeation has been applied in numerous studies to mechanistically explore molecular transport in membranes including RO and NF. In this review, we critically assess TST applied to transmembrane permeation in salt-rejecting membranes, focusing on mechanistic insights into transport under confinement that can be gained from this framework and the key limitations associated with the method. We first demonstrate and discuss the limited ability of the commonly used solution-diffusion model to mechanistically explain transport and selectivity trends observed in RO and NF membranes. Next, we review important milestones in the development of TST, introduce its underlying principles and equations, and establish the connection to transmembrane permeation with a focus on molecular-level enthalpic and entropic barriers that govern water and solute transport under confinement. We then critically review the application of TST to explore transport in RO and NF membranes, analyzing trends in measured enthalpic and entropic barriers and synthesizing new data to highlight important phenomena associated with the temperature-dependent measurement of the activation parameters. We also discuss major limitations of the experimental application of TST and propose specific solutions to minimize the uncertainties surrounding the current approach. We conclude with identifying future research needs to enhance the implementation and maximize the benefit of TST application to transmembrane permeation.


Assuntos
Membranas Artificiais , Purificação da Água , Filtração/métodos , Osmose , Cloreto de Sódio , Água , Purificação da Água/métodos
6.
Nano Lett ; 21(6): 2429-2435, 2021 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-33689366

RESUMO

Electrically conductive membranes are a promising avenue to reduce water treatment costs due to their ability to minimize the detrimental impact of fouling, to degrade contaminants, and to provide other additional benefits during filtration. Here, we demonstrate the facile and low-cost fabrication of electrically conductive membranes using laser-reduced graphene oxide (GO). In this method, GO is filtered onto a poly(ether sulfone) membrane support before being pyrolyzed via laser into a conductive film. Laser-reduced GO composite membranes are shown to be equally as permeable to water as the underlying membrane support and possess sheet resistances as low as 209 Ω/□. Application of the laser-reduced GO membranes is demonstrated through greater than 97% removal of a surrogate water contaminant, 25 µM methyl orange dye, with an 8 V applied potential. Furthermore, we show that laser-reduced GO membranes can be further tuned with the addition of p-phenylenediamine binding molecules to decrease the sheet resistance to 54 Ω/□.

7.
Sci Adv ; 5(7): eaax0763, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31360770

RESUMO

Solar-thermal desalination (STD) is a potentially low-cost, sustainable approach for providing high-quality fresh water in the absence of water and energy infrastructures. Despite recent efforts to advance STD by improving heat-absorbing materials and system designs, the best strategies for maximizing STD performance remain uncertain. To address this problem, we identify three major steps in distillation-based STD: (i) light-to-heat energy conversion, (ii) thermal vapor generation, and (iii) conversion of vapor to water via condensation. Using specific water productivity as a quantitative metric for energy efficiency, we show that efficient recovery of the latent heat of condensation is critical for STD performance enhancement, because solar vapor generation has already been pushed toward its performance limit. We also demonstrate that STD cannot compete with photovoltaic reverse osmosis desalination in energy efficiency. We conclude by emphasizing the importance of factors other than energy efficiency, including cost, ease of maintenance, and applicability to hypersaline waters.

8.
Environ Sci Technol ; 51(21): 12925-12937, 2017 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-29022347

RESUMO

Low-grade heat energy from sources below 100 °C is available in massive quantities around the world, but cannot be converted to electricity effectively using existing technologies due to variability in the heat output and the small temperature difference between the source and environment. The recently developed thermo-osmotic energy conversion (TOEC) process has the potential to harvest energy from low-grade heat sources by using a temperature difference to create a pressurized liquid flux across a membrane, which can be converted to mechanical work via a turbine. In this study, we perform the first analysis of energy efficiency and the expected performance of the TOEC technology, focusing on systems utilizing hydrophobic porous vapor-gap membranes and water as a working fluid. We begin by developing a framework to analyze realistic mass and heat transport in the process, probing the impact of various membrane parameters and system operating conditions. Our analysis reveals that an optimized system can achieve heat-to-electricity energy conversion efficiencies up to 4.1% (34% of the Carnot efficiency) with hot and cold working temperatures of 60 and 20 °C, respectively, and an operating pressure of 5 MPa (50 bar). Lower energy efficiencies, however, will occur in systems operating with high power densities (>5 W/m2) and with finite-sized heat exchangers. We identify that the most important membrane properties for achieving high performance are an asymmetric pore structure, high pressure resistance, a high porosity, and a thickness of 30 to 100 µm. We also quantify the benefits in performance from utilizing deaerated water streams, strong hydrodynamic mixing in the membrane module, and high heat exchanger efficiencies. Overall, our study demonstrates the promise of full-scale TOEC systems to extract energy from low-grade heat and identifies key factors for performance optimization moving forward.


Assuntos
Temperatura Alta , Osmose , Eletricidade , Membranas Artificiais , Água
9.
Environ Sci Technol ; 49(21): 13050-8, 2015 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-26426100

RESUMO

Next-generation pressure-retarded osmosis (PRO) approaches aim to harness the energy potential of streams with high salinity differences, such as wastewater effluent and seawater desalination plant brine. In this study, we evaluated biofouling propensity in PRO. Bench-scale experiments were carried out for 24 h using a model wastewater effluent feed solution and simulated seawater desalination brine pressurized to 24 bar. For biofouling tests, wastewater effluent was inoculated with Pseudomonas aeruginosa and artificial seawater desalination plant brine draw solution was seeded with Pseudoalteromonas atlantica. Our results indicate that biological growth in the feed wastewater stream channel severely fouled both the membrane support layer and feed spacer, resulting in ∼50% water flux decline. We also observed an increase in the pumping pressure required to force water through the spacer-filled feed channel, with pressure drop increasing from 6.4±0.8 bar m(-1) to 15.1±2.6 bar m(-1) due to spacer blockage from the developing biofilm. Neither the water flux decline nor the increased pressure drop in the feed channel could be reversed using a pressure-aided osmotic backwash. In contrast, biofouling in the seawater brine draw channel was negligible. Overall, the reduced performance due to water flux decline and increased pumping energy requirements from spacer blockage highlight the serious challenges of using high fouling potential feed sources in PRO, such as secondary wastewater effluent. We conclude that PRO power generation using wastewater effluent and seawater desalination plant brine may become possible only with rigorous pretreatment or new spacer and membrane designs.


Assuntos
Incrustação Biológica , Osmose , Pressão , Bactérias/ultraestrutura , Biofilmes/crescimento & desenvolvimento , Imageamento Tridimensional , Membranas Artificiais , Modelos Teóricos , Pressão Osmótica , Salinidade , Sais , Água do Mar/química , Espectrometria por Raios X , Águas Residuárias/química , Purificação da Água
10.
Environ Sci Technol ; 49(20): 12551-9, 2015 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-26393282

RESUMO

Pressure-retarded osmosis (PRO) is a promising source of renewable energy when hypersaline brines and other high concentration solutions are used. However, membrane performance under conditions suitable for these solutions is poorly understood. In this work, we use a new method to characterize membranes under a variety of pressures and concentrations, including hydraulic pressures up to 48.3 bar and concentrations of up to 3 M NaCl. We find membrane selectivity decreases as the draw solution concentration is increased, with the salt permeability coefficient increasing by a factor of 2 when the draw concentration is changed from 0.6 to 3 M NaCl, even when the applied hydraulic pressure is maintained constant. Additionally, we find that significant pumping energy is required to overcome frictional pressure losses in the spacer-filled feed channel and achieve suitable mass transfer on the feed side of the membrane, especially at high operating pressures. For a meter-long module operating at 41 bar, we estimate feedwater will have to be pumped in at a pressure of at least 3 bar. Both the reduced selectivity and increased pumping energy requirements we observe in PRO will significantly diminish the obtainable net energy, highlighting important new challenges for development of systems utilizing hypersaline draw solutions.


Assuntos
Membranas Artificiais , Osmose , Peso Molecular , Pressão Osmótica , Permeabilidade , Pressão , Energia Renovável , Cloreto de Sódio/química
11.
Environ Sci Technol ; 48(20): 12435-44, 2014 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-25222561

RESUMO

We investigate the performance of pressure retarded osmosis (PRO) at the module scale, accounting for the detrimental effects of reverse salt flux, internal concentration polarization, and external concentration polarization. Our analysis offers insights on optimization of three critical operation and design parameters--applied hydraulic pressure, initial feed flow rate fraction, and membrane area--to maximize the specific energy and power density extractable in the system. For co- and counter-current flow modules, we determine that appropriate selection of the membrane area is critical to obtain a high specific energy. Furthermore, we find that the optimal operating conditions in a realistic module can be reasonably approximated using established optima for an ideal system (i.e., an applied hydraulic pressure equal to approximately half the osmotic pressure difference and an initial feed flow rate fraction that provides equal amounts of feed and draw solutions). For a system in counter-current operation with a river water (0.015 M NaCl) and seawater (0.6 M NaCl) solution pairing, the maximum specific energy obtainable using performance properties of commercially available membranes was determined to be 0.147 kWh per m(3) of total mixed solution, which is 57% of the Gibbs free energy of mixing. Operating to obtain a high specific energy, however, results in very low power densities (less than 2 W/m(2)), indicating that the trade-off between power density and specific energy is an inherent challenge to full-scale PRO systems. Finally, we quantify additional losses and energetic costs in the PRO system, which further reduce the net specific energy and indicate serious challenges in extracting net energy in PRO with river water and seawater solution pairings.


Assuntos
Fontes Geradoras de Energia , Osmose , Salinidade , Água Doce , Membranas Artificiais , Pressão , Rios , Água do Mar , Cloreto de Sódio
12.
Environ Sci Technol ; 48(12): 6702-9, 2014 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-24857308

RESUMO

This study evaluated the role of physical and biological filter characteristics on the reduction of MS2 bacteriophage in biosand filters (BSFs). Three full-scale concrete Version 10 BSFs, each with a 55 cm sand media depth and a 12 L charge volume, reached 4 log10 reduction of MS2 within 43 days of operation. A consistently high reduction of MS2 between 4 log10 and 7 log10 was demonstrated for up to 294 days. Further examining one of the filters revealed that an average of 2.8 log10 reduction of MS2 was achieved within the first 5 cm of the filter, and cumulative virus reduction reached an average of 5.6 log10 after 240 days. Core sand samples from this filter were taken for protein, carbohydrate, and genomic extraction. Higher reduction of MS2 in the top 5 cm of the sand media (0.56 log10 reduction per cm vs 0.06 log10 reduction per cm for the rest of the filter depth) coincided with greater diversity of microbial communities and increased concentrations of carbohydrates. In the upper layers, "Candidatus Nitrosopumilus maritimus" and "Ca. Nitrospira defluvii" were found as dominant populations, while significant amounts of Thiobacillus-related OTUs were detected in the lower layers. Proteolytic bacterial populations such as the classes Sphingobacteria and Clostridia were observed over the entire filter depth. Thus, this study provides the first insight into microbial community structures that may play a role in MS2 reduction in BSF ecosystems. Overall, besides media ripening and physical reduction mechanisms such as filter depth and long residence time (45 min vs 24 ± 8.5 h), the establishment of chemolithotrophs and proteolytic bacteria could greatly enhance the reduction of MS2.


Assuntos
Bactérias/crescimento & desenvolvimento , Filtração/instrumentação , Levivirus/isolamento & purificação , Dióxido de Silício/química , Microbiologia do Solo , Bactérias/genética , Proteínas de Bactérias/análise , Biodiversidade , Carboidratos/análise , Análise de Componente Principal , RNA Ribossômico 16S/genética , Fatores de Tempo
13.
Environ Sci Technol ; 45(24): 10385-93, 2011 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-22017181

RESUMO

Although the sunlight-mediated inactivation of viruses has been recognized as an important process that controls surface water quality, the mechanisms of virus inactivation by sunlight are not yet clearly understood. We investigated the synergistic role of temperature and Suwannee River natural organic matter (SRNOM), an exogenous sensitizer, for sunlight-mediated inactivation of porcine rotavirus and MS2 bacteriophage. Upon irradiation by a full spectrum of simulated sunlight in the absence of SRNOM and in the temperature range of 14-42 °C, high inactivation rate constants, k(obs), of MS2 (k(obs) ≤ 3.8 h(-1) or 1-log(10) over 0.6 h) and rotavirus (k(obs) ≤ 11.8 h(-1) or ∼1-log(10) over 0.2 h) were measured. A weak temperature (14-42 °C) dependence of k(obs) values was observed for both viruses irradiated by the full sunlight spectrum. Under the same irradiation condition, the presence of SRNOM reduced the inactivation of both viruses due to attenuation of lower wavelengths of the simulated sunlight. For rotavirus and MS2 solutions irradiated by only UVA and visible light in the absence of SRNOM, inactivation kinetics were slow (k(obs) < 0.3 h(-1) or <1-log(10) unit reduction over 7 h) and temperature-independent for the range considered. Conversely, under UVA and visible light irradiation and in the presence of SRNOM, temperature-dependent inactivation of MS2 was observed. For rotavirus, the SRNOM-mediated exogenous inactivation was only important at temperatures >33 °C, with low rotavirus k(obs) values (k(obs) ≈ 0.2 h(-1); 1-log(10) unit reduction over 12 h) for the temperature range of 14-33 °C. These k(obs) values increased to 0.5 h(-1) at 43 °C and 1.5 h(-1) (1-log(10) reduction over 1.6 h) at 50 °C. While SRNOM-mediated exogenous inactivation of MS2 was triggered by singlet oxygen, the presence of hydrogen peroxide was important for rotavirus inactivation in the 40-50 °C range.


Assuntos
Levivirus/efeitos da radiação , Rios/química , Rotavirus/efeitos da radiação , Energia Solar , Inativação de Vírus/efeitos da radiação , Levivirus/química , Levivirus/fisiologia , Rios/virologia , Rotavirus/química , Rotavirus/fisiologia , Temperatura , Movimentos da Água , Poluição da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...