Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Lancet Infect Dis ; 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38679035

RESUMO

BACKGROUND: Dengue human infection models (DHIMs) are important tools to down-select dengue vaccine candidates and establish tetravalent efficacy before advanced clinical field trials. We aimed to provide data for the safety and immunogenicity of DHIM and evaluate dengue vaccine efficacy. METHODS: We performed an open-label, phase 1 trial at the University of Maryland (Baltimore, MD, USA). Eligible participants were healthy individuals aged 18-50 years who either previously received a tetravalent dengue purified inactivated vaccine prime followed by a live-attenuated vaccine boost (ie, the vaccinee group), or were unvaccinated flavivirus-naive participants (ie, the control group). Participants in the vaccinee group with detectable pre-challenge dengue virus-1 neutralising antibody titres and flavivirus-naive participants in the control group were inoculated with dengue virus-1 strain 45AZ5 in the deltoid region, 27-65 months following booster dosing. These participants were followed-up from days 4-16 following dengue virus-1 live virus human challenge, with daily real-time quantitative PCR specific to dengue virus-1 RNA detection, and dengue virus-1 solicited local and systemic adverse events were recorded. The primary outcomes were safety (ie, solicited local and systemic adverse events) and vaccine efficacy (ie, dengue virus-1 RNAaemia) following dengue challenge. This study is registered with ClinicalTrials.gov, number NCT04786457. FINDINGS: In January 2021, ten eligible participants were enrolled; of whom, six (60%) were in the vaccinee group and four (40%) were in the control group. Daily quantitative PCR detected dengue virus-1 RNA in nine (90%) of ten participants (five [83%] of six in the vaccinee group and all four [100%] in the control group). The mean onset of RNAaemia occurred on day 5 (SD 1·0) in the vaccinee group versus day 8 (1·5) in the control group (95% CI 1·1-4·9; p=0·007), with a trend towards reduced RNAaemia duration in the vaccinee group compared with the control group (8·2 days vs 10·5 days; 95% CI -0·08 to 4·68; p=0·056). Mild-to-moderate symptoms (nine [90%] of ten), leukopenia (eight [89%] of nine), and elevated aminotransferases (seven [78%] of nine) were commonly observed. Severe adverse events were detected only in the vaccinee group (fever ≥38·9°C in three [50%] of six, headache in one [17%], and transient grade 4 aspartate aminotransferase elevation in one [17%]). No deaths were reported. INTERPRETATION: Participants who had tetravalent dengue purified inactivated vaccine prime and live-attenuated vaccine boost were unprotected against dengue virus-1 infection and further showed increased clinical, immunological, and transcriptomic evidence for inflammation potentially mediated by pre-existing infection-enhancing antibodies. This study highlights the impact of small cohort, human challenge models studying dengue pathogenesis and downstream vaccine development. FUNDING: Military Infectious Disease Research Program and Medical Technology Enterprise Consortium and Advanced Technology International.

2.
J Infect Dis ; 229(6): 1883-1893, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38330357

RESUMO

BACKGROUND: Malaria is preventable yet causes >600 000 deaths annually. RTS,S, the first marketed malaria vaccine, has modest efficacy, but improvements are needed for eradication. METHODS: We conducted an open-label, dose escalation phase 1 study of a full-length recombinant circumsporozoite protein vaccine (rCSP) administered with adjuvant glucopyranosyl lipid A-liposome Quillaja saponaria 21 formulation (GLA-LSQ) on days 1, 29, and 85 or 1 and 490 to healthy, malaria-naive adults. The primary end points were safety and reactogenicity. The secondary end points were antibody responses and Plasmodium falciparum parasitemia after homologous controlled human malaria infection. RESULTS: Participants were enrolled into 4 groups receiving rCSP/GLA-LSQ: 10 µg × 3 (n = 20), 30 µg × 3 (n = 10), 60 µg × 3 (n = 10), or 60 µg × 2 (n = 9); 10 participants received 30 µg rCSP alone × 3, and there were 6 infectivity controls. Participants experienced no serious adverse events. Rates of solicited and unsolicited adverse events were similar among groups. All 26 participants who underwent controlled human malaria infection 28 days after final vaccinations developed malaria. Increasing vaccine doses induced higher immunoglobulin G titers but did not achieve previously established RTS,S benchmarks. CONCLUSIONS: rCSP/GLA-LSQ had favorable safety results. However, tested regimens did not induce protective immunity. Further investigation could assess whether adjuvant or schedule adjustments improve efficacy. CLINICAL TRIALS REGISTRATION: NCT03589794.


Assuntos
Adjuvantes Imunológicos , Anticorpos Antiprotozoários , Lipídeo A , Lipossomos , Vacinas Antimaláricas , Malária Falciparum , Plasmodium falciparum , Proteínas de Protozoários , Humanos , Vacinas Antimaláricas/imunologia , Vacinas Antimaláricas/administração & dosagem , Vacinas Antimaláricas/efeitos adversos , Malária Falciparum/prevenção & controle , Malária Falciparum/imunologia , Adulto , Plasmodium falciparum/imunologia , Proteínas de Protozoários/imunologia , Feminino , Masculino , Adjuvantes Imunológicos/administração & dosagem , Adulto Jovem , Lipídeo A/análogos & derivados , Lipídeo A/administração & dosagem , Lipídeo A/imunologia , Anticorpos Antiprotozoários/sangue , Anticorpos Antiprotozoários/imunologia , Quillaja/química , Adolescente , Vacinas Sintéticas/imunologia , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/efeitos adversos , Pessoa de Meia-Idade , Glucosídeos
3.
Lancet Infect Dis ; 23(5): 578-588, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36708738

RESUMO

BACKGROUND: Human monoclonal antibodies might offer an important new approach to reduce malaria morbidity and mortality. In the first two parts of a three-part clinical trial, the antimalarial monoclonal antibody CIS43LS conferred high protection against parasitaemia at doses of 20 mg/kg or 40 mg/kg administered intravenously followed by controlled human malaria infection. The ability of CIS43LS to confer protection at lower doses or by the subcutaneous route is unknown. We aimed to provide data on the safety and optimisation of dose and route for the human antimalaria monoclonal antibody CIS43LS. METHODS: VRC 612 Part C was the third part of a three-part, first-in-human, phase 1, adaptive trial, conducted at the University of Maryland, Baltimore Center for Vaccine Development and Global Health, Baltimore, MD, USA. We enrolled adults aged 18-50 years with no previous malaria vaccinations or infections, in a sequential, dose-escalating manner. Eligible participants received the monoclonal antibody CIS43LS in a single, open-label dose of 1 mg/kg, 5 mg/kg, or 10 mg/kg intravenously, or 5 mg/kg or 10 mg/kg subcutaneously. Participants underwent controlled human malaria infection by the bites of five mosquitoes infected with Plasmodium falciparum 3D7 strain approximately 8 weeks after their monoclonal antibody inoculation. Six additional control participants who did not receive CIS43LS underwent controlled human malaria infection simultaneously. Participants were followed-up daily on days 7-18 and day 21, with qualitative PCR used for P falciparum detection. Participants who tested positive for P falciparum were treated with atovaquone-proguanil and those who remained negative were treated at day 21. Participants were followed-up until 24 weeks after dosing. The primary outcome was safety and tolerability of CIS43LS at each dose level, assessed in the as-treated population. Secondary outcomes included protective efficacy of CIS43LS after controlled human malaria infection. This trial is now complete and is registered with ClinicalTrials.gov, NCT04206332. FINDINGS: Between Sept 1, 2021, and Oct 29, 2021, 47 people were assessed for eligibility and 31 were enrolled (one subsequently withdrew and was replaced) and assigned to receive doses of 1 mg/kg (n=7), 5 mg/kg (n=4), and 10 mg/kg (n=3) intravenously and 5 mg/kg (n=4) and 10 mg/kg (n=4) subcutaneously, or to the control group (n=8). CIS43LS administration was safe and well tolerated; no serious adverse events occurred. CIS43LS protected 18 (82%) of 22 participants who received a dose. No participants developed parasitaemia following dosing at 5 mg/kg intravenously or subcutaneously, or at 10 mg/kg intravenously or subcutaneously. All six control participants and four of seven participants dosed at 1 mg/kg intravenously developed parasitaemia after controlled human malaria infection. INTERPRETATION: CIS43LS was safe and well tolerated, and conferred protection against P falciparum at low doses and by the subcutaneous route, providing evidence that this approach might be useful to prevent malaria across several clinical use cases. FUNDING: National Institute of Allergy and Infectious Diseases, National Institutes of Health.


Assuntos
Antimaláricos , Vacinas Antimaláricas , Malária Falciparum , Adulto , Animais , Humanos , Anticorpos Monoclonais/uso terapêutico , Malária Falciparum/tratamento farmacológico , Malária Falciparum/prevenção & controle , Plasmodium falciparum , Vacinas Antimaláricas/uso terapêutico
4.
PLoS One ; 9(5): e97398, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24838112

RESUMO

Nucleic acid testing (NAT) for malaria parasites is an increasingly recommended diagnostic endpoint in clinical trials of vaccine and drug candidates and is also important in surveillance of malaria control and elimination efforts. A variety of reported NAT assays have been described, yet no formal external quality assurance (EQA) program provides validation for the assays in use. Here, we report results of an EQA exercise for malaria NAT assays. Among five centers conducting controlled human malaria infection trials, all centers achieved 100% specificity and demonstrated limits of detection consistent with each laboratory's pre-stated expectations. Quantitative bias of reported results compared to expected results was generally <0.5 log10 parasites/mL except for one laboratory where the EQA effort identified likely reasons for a general quantitative shift. The within-laboratory variation for all assays was low at <10% coefficient of variation across a range of parasite densities. Based on this study, we propose to create a Molecular Malaria Quality Assessment program that fulfills the need for EQA of malaria NAT assays worldwide.


Assuntos
Erradicação de Doenças/métodos , Monitoramento Epidemiológico , Malária/diagnóstico , Malária/prevenção & controle , Plasmodium falciparum/genética , Garantia da Qualidade dos Cuidados de Saúde/métodos , Humanos , Reação em Cadeia da Polimerase/normas , Reação em Cadeia da Polimerase Via Transcriptase Reversa/normas , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...