Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 19(32): 21759-21768, 2017 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-28782765

RESUMO

Laboratory experiments have shown that the energetic processing, i.e. ion bombardment and UV photolysis, of interstellar grain mantles and cometary surfaces is efficient in the production of formamide. To explain its presence in the gas-phase in these astrophysical environments, a desorption mechanism has to be taken into account. In this work we show experimental results on the thermal evolution of formamide when deposited at 17 K as pure and in mixture with water or carbon monoxide. In these samples, we observed formamide desorption at 220 K. Moreover, we discuss its synthesis in a mixture containing molecular nitrogen, methane and water (N2:CH4:H2O) deposited at 17 K and bombarded with 200 keV H+. Heating the sample, we observed that the newly formed formamide remains trapped in the refractory residue produced after the ion bombardment up to 296 K. To analyse the samples we used Fourier transform-infrared spectroscopy (FT-IR) that allowed us to study the infrared spectra between the deposition and the complete desorption of formamide. Here we discuss the experimental results in view of their astrophysical relevance.

2.
Astrobiology ; 16(3): 201-43, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27003862

RESUMO

The European AstRoMap project (supported by the European Commission Seventh Framework Programme) surveyed the state of the art of astrobiology in Europe and beyond and produced the first European roadmap for astrobiology research. In the context of this roadmap, astrobiology is understood as the study of the origin, evolution, and distribution of life in the context of cosmic evolution; this includes habitability in the Solar System and beyond. The AstRoMap Roadmap identifies five research topics, specifies several key scientific objectives for each topic, and suggests ways to achieve all the objectives. The five AstRoMap Research Topics are • Research Topic 1: Origin and Evolution of Planetary Systems • Research Topic 2: Origins of Organic Compounds in Space • Research Topic 3: Rock-Water-Carbon Interactions, Organic Synthesis on Earth, and Steps to Life • Research Topic 4: Life and Habitability • Research Topic 5: Biosignatures as Facilitating Life Detection It is strongly recommended that steps be taken towards the definition and implementation of a European Astrobiology Platform (or Institute) to streamline and optimize the scientific return by using a coordinated infrastructure and funding system.


Assuntos
Exobiologia/tendências , Europa (Continente) , Meio Ambiente Extraterreno , Compostos Orgânicos/análise , Origem da Vida , Planetas
3.
Astrobiology ; 11(9): 875-82, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22059692

RESUMO

In this experimental study, cells of the radiation-resistant bacterium Deinococcus radiodurans were exposed to several different sources of radiation chosen to replicate the charged particles found in the solar wind. Naked cells or cells mixed with dust grains (basalt or sandstone) differing in elemental composition were exposed to electrons, protons, and ions to determine the probability of cell survival after irradiation. Doses necessary to reduce the viability of cell population to 10% (LD(10)) were determined under different experimental conditions. The results of this study indicate that low-energy particle radiation (2-4 keV), typically present in the slow component of the solar wind, had no effect on dehydrated cells, even if exposed at fluences only reached in more than 1000 years at Sun-Earth distance (1 AU). Higher-energy ions (200 keV) found in solar flares would inactivate 90% of exposed cells after several events in less than 1 year at 1 AU. When mixed with dust grains, LD(10) increases about 10-fold. These results show that, compared to the highly deleterious effects of UV radiation, solar wind charged particles are relatively benign, and organisms protected under grains from UV radiation would also be protected from the charged particles considered in this study.


Assuntos
Simulação por Computador , Deinococcus/citologia , Deinococcus/efeitos da radiação , Laboratórios , Viabilidade Microbiana , Luz Solar , Vento , Carbono , Deinococcus/ultraestrutura , Elétrons , Viabilidade Microbiana/efeitos da radiação , Prótons , Silicatos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...