Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 4893, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849340

RESUMO

Amyotrophic lateral sclerosis (ALS) is a debilitating motor neuron disease and lacks effective disease-modifying treatments. This study utilizes a comprehensive multiomic approach to investigate the early and sex-specific molecular mechanisms underlying ALS. By analyzing the prefrontal cortex of 51 patients with sporadic ALS and 50 control subjects, alongside four transgenic mouse models (C9orf72-, SOD1-, TDP-43-, and FUS-ALS), we have uncovered significant molecular alterations associated with the disease. Here, we show that males exhibit more pronounced changes in molecular pathways compared to females. Our integrated analysis of transcriptomes, (phospho)proteomes, and miRNAomes also identified distinct ALS subclusters in humans, characterized by variations in immune response, extracellular matrix composition, mitochondrial function, and RNA processing. The molecular signatures of human subclusters were reflected in specific mouse models. Our study highlighted the mitogen-activated protein kinase (MAPK) pathway as an early disease mechanism. We further demonstrate that trametinib, a MAPK inhibitor, has potential therapeutic benefits in vitro and in vivo, particularly in females, suggesting a direction for developing targeted ALS treatments.


Assuntos
Esclerose Lateral Amiotrófica , Modelos Animais de Doenças , Sistema de Sinalização das MAP Quinases , Camundongos Transgênicos , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/tratamento farmacológico , Esclerose Lateral Amiotrófica/metabolismo , Humanos , Feminino , Animais , Masculino , Camundongos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Piridonas/farmacologia , Piridonas/uso terapêutico , Proteína FUS de Ligação a RNA/metabolismo , Proteína FUS de Ligação a RNA/genética , Córtex Pré-Frontal/metabolismo , Transcriptoma , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Pessoa de Meia-Idade , MicroRNAs/genética , MicroRNAs/metabolismo , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Caracteres Sexuais , Idoso , Fatores Sexuais , Pirimidinonas
2.
Adv Healthc Mater ; 12(30): e2300811, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37669775

RESUMO

A new therapeutic approach using cell-derived nanovesicles (cdNVs) is offered here to overcome the lack of effective treatments for liver fibrosis, a reversible chronic liver disease. To achieve this goal the formation and purification of cdNVs from untreated, quiescent-like, or activated LX-2 cells, an immortalized human hepatic stellate cell (HSC) line with key features of transdifferentiated HSCs are established. Analysis of the genotype and phenotype of naïve and transdifferentiated LX-2 cells activated through transforming growth factor beta 1, following treatment with cdNVs, reveals a concentration-dependent fibrosis regression. The beneficial fibrosis-resolving effects of cdNVs are linked to their biomolecular corona. Liposomes generated using lipids extracted from cdNVs exhibit a reduced antifibrotic response in perpetuated LX-2 cells and show a reduced cellular uptake. However, incubation with soluble factors collected during purification results in a new corona, thereby restoring fibrosis regression activity. Overall, cdNVs display encouraging therapeutic properties, making them a promising candidate for the development of liver fibrosis resolving therapeutics.


Assuntos
Cirrose Hepática , Fígado , Humanos , Cirrose Hepática/tratamento farmacológico , Fígado/metabolismo , Linhagem Celular , Fibrose , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/patologia
3.
Plant J ; 113(6): 1160-1175, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36609772

RESUMO

Cisgenesis, the genetic modification of a plant with genes from a sexually compatible plant, was used to confer fire blight resistance to the cultivar 'Gala Galaxy' by amendment of the resistance gene FB_MR5, resulting in the line C44.4.146. To verify whether cisgenesis changed other tree-, flower- or fruit-related traits, a 5-year field trial was conducted with trees of C44.4.146 and multiple control genotypes, including members of the 'Gala' sports group. None of the 44 investigated tree-, flower- or fruit-related traits significantly differed between C44.4.146 and at least one of the control genotypes in all observation years. However, fruits of C44.4.146 and its wild-type 'Gala Galaxy' from tissue culture were paler in color than fruits of 'Gala Galaxy' that had not undergone tissue culture. There was no significant and consistently detected difference in the fruit flesh and peel metabolome of C44.4.146 compared with the control genotypes. Finally, the disease resistance of C44.4.146 was confirmed also when the fire blight pathogen was inoculated through the flowers. We conclude that the use of cisgenesis to confer fire blight resistance to 'Gala Galaxy' in C44.4.146 did not have unintended effects, and that the in vitro establishment of 'Gala Galaxy' had a greater effect on C44.4.146 properties than its generation applying cisgenesis.


Assuntos
Erwinia amylovora , Malus , Malus/genética , Doenças das Plantas/genética , Frutas/genética , Resistência à Doença/genética
4.
J Exp Bot ; 72(10): 3739-3755, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33684221

RESUMO

Plastid metabolism is critical in both photoautotrophic and heterotrophic plant cells. In chloroplasts, fructose-1,6-bisphosphate aldolase (FBA) catalyses the formation of both fructose 1,6-bisphosphate and sedoheptulose 1,7-bisphosphate within the Calvin-Benson cycle. Three Arabidopsis genes, AtFBA1-AtFBA3, encode plastidial isoforms of FBA, but the contribution of each isoform is unknown. Phylogenetic analysis indicates that FBA1 and FBA2 derive from a recently duplicated gene, while FBA3 is a more ancient paralog. fba1 mutants are phenotypically indistinguishable from the wild type, while both fba2 and fba3 have reduced growth. We show that FBA2 is the major isoform in leaves, contributing most of the measurable activity. Partial redundancy with FBA1 allows both single mutants to survive, but combining both mutations is lethal, indicating a block of photoautotrophy. In contrast, FBA3 is expressed predominantly in heterotrophic tissues, especially the leaf and root vasculature, but not in the leaf mesophyll. We show that the loss of FBA3 affects plastidial glycolytic metabolism of the root, potentially limiting the biosynthesis of essential compounds such as amino acids. However, grafting experiments suggest that fba3 is dysfunctional in leaf phloem transport, and we suggest that a block in photoassimilate export from leaves causes the buildup of high carbohydrate concentrations and retarded growth.


Assuntos
Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Frutose-Bifosfato Aldolase/genética , Frutose-Bifosfato Aldolase/metabolismo , Fotossíntese , Filogenia , Plastídeos/metabolismo
5.
Isotopes Environ Health Stud ; 57(1): 11-34, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32885670

RESUMO

The carbon isotopic composition (δ13C) of foliage is often used as proxy for plant performance. However, the effect of N O 3 - vs. N H 4 + supply on δ13C of leaf metabolites and respired CO2 is largely unknown. We supplied tobacco plants with a gradient of N O 3 - to N H 4 + concentration ratios and determined gas exchange variables, concentrations and δ13C of tricarboxylic acid (TCA) cycle intermediates, δ13C of dark-respired CO2, and activities of key enzymes nitrate reductase, malic enzyme and phosphoenolpyruvate carboxylase. Net assimilation rate, dry biomass and concentrations of organic acids and starch decreased along the gradient. In contrast, respiration rates, concentrations of intercellular CO2, soluble sugars and amino acids increased. As N O 3 - decreased, activities of all measured enzymes decreased. δ13C of CO2 and organic acids closely co-varied and were more positive under N O 3 - supply, suggesting organic acids as potential substrates for respiration. Together with estimates of intra-molecular 13C enrichment in malate, we conclude that a change in the anaplerotic reaction of the TCA cycle possibly contributes to 13C enrichment in organic acids and respired CO2 under N O 3 - supply. Thus, the effect of N O 3 - vs. N H 4 + on δ13C is highly relevant, particularly if δ13C of leaf metabolites or respiration is used as proxy for plant performance.


Assuntos
Compostos de Amônio/farmacologia , Dióxido de Carbono/metabolismo , Nicotiana/metabolismo , Nitratos/farmacologia , Folhas de Planta/metabolismo , Compostos de Amônio/metabolismo , Isótopos de Carbono/análise , Respiração Celular , Malatos/metabolismo , Nitratos/metabolismo , Folhas de Planta/efeitos dos fármacos , Amido/metabolismo , Nicotiana/efeitos dos fármacos
6.
Sci Rep ; 9(1): 11523, 2019 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-31395906

RESUMO

The majority of cellular processes are carried out by protein complexes. Various size fractionation methods have previously been combined with mass spectrometry to identify protein complexes. However, most of these approaches lack the quantitative information which is required to understand how changes of protein complex abundance and composition affect metabolic fluxes. In this paper we present a proof of concept approach to quantitatively study the complexome in the model plant Arabidopsis thaliana at the end of the day (ED) and the end of the night (EN). We show that size-fractionation of native protein complexes by Clear-Native-PAGE (CN-PAGE), coupled with mass spectrometry can be used to establish abundance profiles along the molecular weight gradient. Furthermore, by deconvoluting complex protein abundance profiles, we were able to drastically improve the clustering of protein profiles. To identify putative interaction partners, and ultimately protein complexes, our approach calculates the Euclidian distance between protein profile pairs. Acceptable threshold values are based on a cut-off that is optimized by a receiver-operator characteristic (ROC) curve analysis. Our approach shows low technical variation and can easily be adapted to study in the complexome in any biological system.


Assuntos
Mitocôndrias/genética , Complexos Multiproteicos/isolamento & purificação , Eletroforese em Gel de Poliacrilamida Nativa/métodos , Proteômica , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/classificação , Proteínas de Arabidopsis/genética , Eletroforese em Gel de Poliacrilamida , Regulação da Expressão Gênica de Plantas/genética , Espectrometria de Massas , Complexos Multiproteicos/genética
8.
Plant Cell Physiol ; 59(3): 510-526, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29300930

RESUMO

Plants are constantly challenged in their natural environment by a range of changing conditions. We investigated the acclimation processes and adaptive plant responses to various long-term mild changes and compared them directly within one experimental set-up. Arabidopsis thaliana plants were grown in hydroponic culture for 10 d under controlled abiotic stress (15°C, 25°C, salt and osmotic) and in nutrient deficiency (nitrate and phosphate). Plant growth was monitored and proteomic experiments were performed. Resource allocation between tissues altered during the plants' response. The growth patterns and induced changes of the proteomes indicated that the underlying mechanisms of the adaptation processes are highly specific to the respective environmental condition. Our results indicated differential regulation of response to salt and osmotic treatment, while the proteins in the changed temperature regime showed an inverse, temperature-sensitive control. There was a high correlation of protein level between the nutrient-deficient treatments, but the enriched pathways varied greatly. The proteomic analysis also revealed new insights into the regulation of proteins specific to the shoot and the root. Our investigation revealed unique strategies of plant acclimation to the different applied treatments on a physiological and proteome level, and these strategies are quite distinct in tissues below and above ground.


Assuntos
Aclimatação/fisiologia , Arabidopsis/fisiologia , Meio Ambiente , Proteômica/métodos , Proteínas de Arabidopsis/metabolismo , Biomassa , Análise por Conglomerados , Ontologia Genética , Osmose , Desenvolvimento Vegetal , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/metabolismo , Proteoma/metabolismo , Temperatura , Fatores de Tempo
9.
PLoS One ; 12(7): e0181444, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28708852

RESUMO

Isoamylases hydrolyse (1-6)-alpha-D-glucosidic linkages in starch and are involved in both starch granule formation and starch degradation. In plants, three isoamylase isoforms with distinct functions in starch synthesis (ISA1 and ISA2) and degradation (ISA3) have been described. Here, we created transgenic potato plants with simultaneously decreased expression of all three isoamylases using a chimeric RNAi construct targeting all three isoforms. Constitutive expression of the hairpin RNA using the 35S CaMV promoter resulted in efficient silencing of all three isoforms in leaves, growing tubers, and sprouting tubers. Neither plant growth nor tuber yield was effected in isoamylase-deficient potato lines. Interestingly, starch metabolism was found to be impaired in a tissue-specific manner. While leaf starch content was unaffected, tuber starch was significantly reduced. The reduction in tuber starch content in the transgenic plants was accompanied by a decrease in starch granules size, an increased sucrose content and decreased hexose levels. Despite the effects on granule size, only little changes in chain length composition of soluble and insoluble glucose polymers were detected. The transgenic tubers displayed an early sprouting phenotype that was accompanied by an increased level of sucrose in parenchyma cells below the outgrowing bud. Since high sucrose levels promote sprouting, we propose that the increased number of small starch granules may cause an accelerated turnover of glucan chains and hence a more rapid synthesis of sucrose. This observation links alterations in starch structure/degradation with developmental processes like meristem activation and sprout outgrowth in potato tubers.


Assuntos
Isoamilase/metabolismo , Proteínas de Plantas/metabolismo , Interferência de RNA , Amido/metabolismo , Hexoses/metabolismo , Isoamilase/antagonistas & inibidores , Isoamilase/genética , Fenótipo , Folhas de Planta/metabolismo , Proteínas de Plantas/antagonistas & inibidores , Proteínas de Plantas/genética , Tubérculos/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Isoformas de Proteínas/antagonistas & inibidores , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA Interferente Pequeno/metabolismo , Plântula/fisiologia , Solanum tuberosum/crescimento & desenvolvimento , Solanum tuberosum/metabolismo , Sacarose/metabolismo
10.
Metab Eng ; 40: 23-32, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28216105

RESUMO

Global demand for higher crop yields and for more efficient utilization of agricultural products will grow over the next decades. Here, we present a new concept for boosting the carbohydrate content of plants, by channeling photosynthetically fixed carbon into a newly engineered glucose polymer pool. We transiently expressed the starch/glycogen synthases from either Saccharomyces cerevisiae or Cyanidioschyzon merolae, together with the starch branching enzyme from C. merolae, in the cytosol of Nicotiana benthamiana leaves. This effectively built a UDP-glucose-dependent glycogen biosynthesis pathway. Glycogen synthesis was observed with Transmission Electron Microscopy, and the polymer structure was further analyzed. Within three days of enzyme expression, glycogen content of the leaf was 5-10 times higher than the starch levels of the control. Further, the leaves produced less starch and sucrose, which are normally the carbohydrate end-products of photosynthesis. We conclude that after enzyme expression, the newly fixed carbohydrates were routed into the new glycogen sink and trapped. Our approach allows carbohydrates to be efficiently stored in a new subcellular compartment, thus increasing the value of vegetative crop tissues for biofuel production or animal feed. The method also opens new potential for increasing the sink strength of heterotrophic tissues.


Assuntos
Metabolismo dos Carboidratos/fisiologia , Melhoramento Genético/métodos , Glicogênio/metabolismo , Nicotiana/fisiologia , Folhas de Planta/fisiologia , Plantas Geneticamente Modificadas/metabolismo , Amido/metabolismo , Citosol/metabolismo , Regulação da Expressão Gênica de Plantas/fisiologia , Glucose/metabolismo , Engenharia Metabólica/métodos , Redes e Vias Metabólicas/genética , Plantas Geneticamente Modificadas/genética , Amido/genética , Regulação para Cima/fisiologia
11.
J Biol Chem ; 291(39): 20718-28, 2016 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-27458017

RESUMO

Arabidopsis leaf chloroplasts typically contain five to seven semicrystalline starch granules. It is not understood how the synthesis of each granule is initiated or how starch granule number is determined within each chloroplast. An Arabidopsis mutant lacking the glucosyl-transferase, STARCH SYNTHASE 4 (SS4) is impaired in its ability to initiate starch granules; its chloroplasts rarely contain more than one large granule, and the plants have a pale appearance and reduced growth. Here we report that the chloroplastic α-amylase AMY3, a starch-degrading enzyme, interferes with granule initiation in the ss4 mutant background. The amy3 single mutant is similar in phenotype to the wild type under normal growth conditions, with comparable numbers of starch granules per chloroplast. Interestingly, the ss4 mutant displays a pleiotropic reduction in the activity of AMY3. Remarkably, complete abolition of AMY3 (in the amy3 ss4 double mutant) increases the number of starch granules produced in each chloroplast, suppresses the pale phenotype of ss4, and nearly restores normal growth. The amy3 mutation also restores starch synthesis in the ss3 ss4 double mutant, which lacks STARCH SYNTHASE 3 (SS3) in addition to SS4. The ss3 ss4 line is unable to initiate any starch granules and is thus starchless. We suggest that SS4 plays a key role in granule initiation, allowing it to proceed in a way that avoids premature degradation of primers by starch hydrolases, such as AMY3.


Assuntos
Arabidopsis/metabolismo , Sintase do Amido/metabolismo , Amido/biossíntese , alfa-Amilases/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Mutação , Amido/genética , Sintase do Amido/genética , alfa-Amilases/genética
12.
Plant Physiol ; 169(3): 1638-55, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26358415

RESUMO

The major component of starch is the branched glucan amylopectin, the branching pattern of which is one of the key factors determining its ability to form semicrystalline starch granules. Here, we investigated the functions of different branching enzyme (BE) types by expressing proteins from maize (Zea mays BE2a), potato (Solanum tuberosum BE1), and Escherichia coli (glycogen BE [EcGLGB]) in Arabidopsis (Arabidopsis thaliana) mutant plants that are deficient in their endogenous BEs and therefore, cannot make starch. The expression of each of these three BE types restored starch biosynthesis to differing degrees. Full complementation was achieved using the class II BE ZmBE2a, which is most similar to the two endogenous Arabidopsis isoforms. Expression of the class I BE from potato, StBE1, resulted in partial complementation and high amylose starch. Expression of the glycogen BE EcGLGB restored only minimal amounts of starch production, which had unusual chain length distribution, branch point distribution, and granule morphology. Nevertheless, each type of BE together with the starch synthases and debranching enyzmes were able to create crystallization-competent amylopectin polymers. These data add to the knowledge of how the properties of the BE influence the final composition of starch and fine structure of amylopectin.


Assuntos
Arabidopsis , Escherichia coli/enzimologia , Glucanos/biossíntese , Solanum tuberosum/enzimologia , Amido/biossíntese , Zea mays/enzimologia , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Regulação da Expressão Gênica de Plantas , Glucanos/química , Plantas Geneticamente Modificadas , Solanum tuberosum/genética , Especificidade da Espécie , Amido/química , Zea mays/genética
13.
Plant Physiol ; 165(4): 1457-1474, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24965177

RESUMO

The major component of starch is the branched glucan amylopectin. Structural features of amylopectin, such as the branching pattern and the chain length distribution, are thought to be key factors that enable it to form semicrystalline starch granules. We varied both structural parameters by creating Arabidopsis (Arabidopsis thaliana) mutants lacking combinations of starch synthases (SSs) SS1, SS2, and SS3 (to vary chain lengths) and the debranching enzyme ISOAMYLASE1-ISOAMYLASE2 (ISA; to alter branching pattern). The isa mutant accumulates primarily phytoglycogen in leaf mesophyll cells, with only small amounts of starch in other cell types (epidermis and bundle sheath cells). This balance can be significantly shifted by mutating different SSs. Mutation of SS1 promoted starch synthesis, restoring granules in mesophyll cell plastids. Mutation of SS2 decreased starch synthesis, abolishing granules in epidermal and bundle sheath cells. Thus, the types of SSs present affect the crystallinity and thus the solubility of the glucans made, compensating for or compounding the effects of an aberrant branching pattern. Interestingly, ss2 mutant plants contained small amounts of phytoglycogen in addition to aberrant starch. Likewise, ss2ss3 plants contained phytoglycogen, but were almost devoid of glucan despite retaining other SS isoforms. Surprisingly, glucan production was restored in the ss2ss3isa triple mutants, indicating that SS activity in ss2ss3 per se is not limiting but that the isoamylase suppresses glucan accumulation. We conclude that loss of only SSs can cause phytoglycogen production. This is readily degraded by isoamylase and other enzymes so it does not accumulate and was previously unnoticed.

14.
PLoS One ; 9(3): e92174, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24642810

RESUMO

This study tested the interchangeability of enzymes in starch metabolism between dicotyledonous and monocotyledonous plant species. Amylopectin--a branched glucose polymer--is the major component of starch and is responsible for its semi-crystalline property. Plants synthesize starch with distinct amylopectin structures, varying between species and tissues. The structure determines starch properties, an important characteristic for cooking and nutrition, and for the industrial uses of starch. Amylopectin synthesis involves at least three enzyme classes: starch synthases, branching enzymes and debranching enzymes. For all three classes, several enzyme isoforms have been identified. However, it is not clear which enzyme(s) are responsible for the large diversity of amylopectin structures. Here, we tested whether the specificities of the debranching enzymes (ISA1 and ISA2) are major determinants of species-dependent differences in amylopectin structure by replacing the dicotyledonous Arabidopsis isoamylases (AtISA1 and AtISA2) with the monocotyledonous rice (Oryza sativa) isoforms. We demonstrate that the ISA1 and ISA2 are sufficiently well conserved between these species to form heteromultimeric chimeric Arabidopsis/rice isoamylase enzymes. Furthermore, we were able to reconstitute the endosperm-specific rice OsISA1 homomultimeric complex in Arabidopsis isa1isa2 mutants. This homomultimer was able to facilitate normal rates of starch synthesis. The resulting amylopectin structure had small but significant differences in comparison to wild-type Arabidopsis amylopectin. This suggests that ISA1 and ISA2 have a conserved function between plant species with a major role in facilitating the crystallization of pre-amylopectin synthesized by starch synthases and branching enzymes, but also influencing the final structure of amylopectin.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Isoamilase/genética , Oryza/genética , Proteínas Recombinantes de Fusão/genética , Amido/biossíntese , Sequência de Aminoácidos , Arabidopsis/enzimologia , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Configuração de Carboidratos , Sequência Conservada , Expressão Gênica , Teste de Complementação Genética , Isoamilase/química , Isoamilase/metabolismo , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Dados de Sequência Molecular , Oryza/enzimologia , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Homologia de Sequência de Aminoácidos , Amido/química
15.
PLoS One ; 8(9): e75223, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24098685

RESUMO

Isoamylase-type debranching enzymes (ISAs) play an important role in determining starch structure. Amylopectin - a branched polymer of glucose - is the major component of starch granules and its architecture underlies the semi-crystalline nature of starch. Mutants of several species lacking the ISA1-subclass of isoamylase are impaired in amylopectin synthesis. Consequently, starch levels are decreased and an aberrant soluble glucan (phytoglycogen) with altered branch lengths and branching pattern accumulates. Here we use TAP (tandem affinity purification) tagging to provide direct evidence in Arabidopsis that ISA1 interacts with its homolog ISA2. No evidence for interaction with other starch biosynthetic enzymes was found. Analysis of the single mutants shows that each protein is destabilised in the absence of the other. Co-expression of both ISA1 and ISA2 Escherichia coli allowed the formation of the active recombinant enzyme and we show using site-directed mutagenesis that ISA1 is the catalytic subunit. The presence of the active isoamylase alters glycogen biosynthesis in E. coli, resulting in colonies that stain more starch-like with iodine. However, analysis of the glucans reveals that rather than producing an amylopectin like substance, cells expressing the active isoamylase still accumulate small amounts of glycogen together with a population of linear oligosaccharides that stain strongly with iodine. We conclude that for isoamylase to promote amylopectin synthesis it needs to act on a specific precursor (pre-amylopectin) generated by the combined actions of plant starch synthase and branching enzyme isoforms and when presented with an unsuitable substrate (i.e. E. coli glycogen) it simply degrades it.


Assuntos
Arabidopsis/enzimologia , Sistema da Enzima Desramificadora do Glicogênio/metabolismo , Isoamilase/metabolismo , Complexos Multiproteicos/metabolismo , Sequência de Bases , Cromatografia em Gel , Cromatografia por Troca Iônica , Primers do DNA/genética , Eletroforese em Gel de Poliacrilamida , Escherichia coli , Teste de Complementação Genética , Glicogênio/biossíntese , Glicogênio/metabolismo , Isoamilase/genética , Isoamilase/isolamento & purificação , Microscopia Eletrônica de Transmissão , Dados de Sequência Molecular , Estabilidade Proteica , Subunidades Proteicas/metabolismo , Alinhamento de Sequência , Análise de Sequência de DNA , Amido/biossíntese , Especificidade por Substrato
16.
Plant Physiol ; 163(1): 75-85, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23872660

RESUMO

STARCH SYNTHASE4 (SS4) is required for proper starch granule initiation in Arabidopsis (Arabidopsis thaliana), although SS3 can partially replace its function. Unlike other starch-deficient mutants, ss4 and ss3/ss4 mutants grow poorly even under long-day conditions. They have less chlorophyll and carotenoids than the wild type and lower maximal rates of photosynthesis. There is evidence of photooxidative damage of the photosynthetic apparatus in the mutants from chlorophyll a fluorescence parameters and their high levels of malondialdehyde. Metabolite profiling revealed that ss3/ss4 accumulates over 170 times more ADP-glucose (Glc) than wild-type plants. Restricting ADP-Glc synthesis, by introducing mutations in the plastidial phosphoglucomutase (pgm1) or the small subunit of ADP-Glc pyrophosphorylase (aps1), largely restored photosynthetic capacity and growth in pgm1/ss3/ss4 and aps1/ss3/ss4 triple mutants. It is proposed that the accumulation of ADP-Glc in the ss3/ss4 mutant sequesters a large part of the plastidial pools of adenine nucleotides, which limits photophosphorylation, leading to photooxidative stress, causing the chlorotic and stunted growth phenotypes of the plants.


Assuntos
Adenosina Difosfato Glucose/metabolismo , Arabidopsis/crescimento & desenvolvimento , Amido/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Mutação , Estresse Oxidativo , Fosforilação , Fotossíntese , Sintase do Amido/genética , Sintase do Amido/metabolismo
17.
Plant Cell ; 25(4): 1400-15, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23632447

RESUMO

The branched glucans glycogen and starch are the most widespread storage carbohydrates in living organisms. The production of semicrystalline starch granules in plants is more complex than that of small, soluble glycogen particles in microbes and animals. However, the factors determining whether glycogen or starch is formed are not fully understood. The tropical tree Cecropia peltata is a rare example of an organism able to make either polymer type. Electron micrographs and quantitative measurements show that glycogen accumulates to very high levels in specialized myrmecophytic structures (Müllerian bodies), whereas starch accumulates in leaves. Compared with polymers comprising leaf starch, glycogen is more highly branched and has shorter branches--factors that prevent crystallization and explain its solubility. RNA sequencing and quantitative shotgun proteomics reveal that isoforms of all three classes of glucan biosynthetic enzyme (starch/glycogen synthases, branching enzymes, and debranching enzymes) are differentially expressed in Müllerian bodies and leaves, providing a system-wide view of the quantitative programming of storage carbohydrate metabolism. This work will prompt targeted analysis in model organisms and cross-species comparisons. Finally, as starch is the major carbohydrate used for food and industrial applications worldwide, these data provide a basis for manipulating starch biosynthesis in crops to synthesize tailor-made polyglucans.


Assuntos
Glicogênio/biossíntese , Proteínas de Plantas/metabolismo , Amido/metabolismo , Urticaceae/metabolismo , Enzima Ramificadora de 1,4-alfa-Glucana/genética , Enzima Ramificadora de 1,4-alfa-Glucana/metabolismo , Metabolismo dos Carboidratos/genética , Eletroforese em Gel de Poliacrilamida , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Glicogênio Sintase/genética , Glicogênio Sintase/metabolismo , Microscopia Eletrônica de Transmissão , Modelos Genéticos , Folhas de Planta/genética , Folhas de Planta/metabolismo , Folhas de Planta/ultraestrutura , Proteínas de Plantas/genética , Proteoma/genética , Proteoma/metabolismo , Proteômica , Análise de Sequência de RNA , Solubilidade , Amido/ultraestrutura , Sintase do Amido/genética , Sintase do Amido/metabolismo , Espectrometria de Massas em Tandem , Transcriptoma , Urticaceae/genética
18.
J Biol Chem ; 287(50): 41745-56, 2012 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-23019330

RESUMO

In this study, we investigated which enzymes are involved in debranching amylopectin during transient starch degradation. Previous studies identified two debranching enzymes, isoamylase 3 (ISA3) and limit dextrinase (LDA), involved in this process. However, plants lacking both enzymes still degrade substantial amounts of starch. Thus, other enzymes/mechanisms must contribute to starch breakdown. We show that the chloroplastic α-amylase 3 (AMY3) also participates in starch degradation and provide evidence that all three enzymes can act directly at the starch granule surface. The isa3 mutant has a starch excess phenotype, reflecting impaired starch breakdown. In contrast, removal of AMY3, LDA, or both enzymes together has no impact on starch degradation. However, removal of AMY3 or LDA in addition to ISA3 enhances the starch excess phenotype. In plants lacking all three enzymes, starch breakdown is effectively blocked, and starch accumulates to the highest levels observed so far. This provides indirect evidence that the heteromultimeric debranching enzyme ISA1-ISA2 is not involved in starch breakdown. However, we illustrate that ISA1-ISA2 can hydrolyze small soluble branched glucans that accumulate when ISA3 and LDA are missing, albeit at a slow rate. Starch accumulation in the mutants correlates inversely with plant growth.


Assuntos
Amilases/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Isoamilase/metabolismo , Amido/metabolismo , Amilases/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Isoamilase/genética , Mutação , Amido/genética
19.
Arabidopsis Book ; 10: e0160, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23393426

RESUMO

Starch is the major non-structural carbohydrate in plants. It serves as an important store of carbon that fuels plant metabolism and growth when they are unable to photosynthesise. This storage can be in leaves and other green tissues, where it is degraded during the night, or in heterotrophic tissues such as roots, seeds and tubers, where it is stored over longer time periods. Arabidopsis accumulates starch in many of its tissues, but mostly in its leaves during the day. It has proven to be a powerful genetic system for discovering how starch is synthesised and degraded, and new proteins and processes have been discovered. Such work has major significance for our starch crops, whose yield and quality could be improved by the application of this knowledge. Research into Arabidopsis starch metabolism has begun to reveal how its daily turnover is integrated into the rest of metabolism and adapted to the environmental conditions. Furthermore, Arabidopsis mutant lines deficient in starch metabolism have been employed as tools to study other biological processes ranging from sugar sensing to gravitropism and flowering time control. This review gives a detailed account of the use of Arabidopsis to study starch metabolism. It describes the major discoveries made and presents an overview of our understanding today, together with some as-yet unresolved questions.

20.
Methods Mol Biol ; 775: 387-410, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21863455

RESUMO

Starch is a primary product of photosynthesis in the chloroplasts of many higher plants. It plays an important role in the day-to-day carbohydrate metabolism of the leaf, and its biosynthesis and degradation represent major fluxes in plant metabolism. Starch serves as a transient reserve of carbohydrate which is used to support respiration, metabolism, and growth at night when there is no production of energy and reducing power through photosynthesis, and no net assimilation of carbon. The chapter includes techniques to measure starch amount and its rate of biosynthesis, to determine its structure and composition, and to monitor its turnover. These methods can be used to investigate transitory starch metabolism in Arabidopsis, where they can be applied in combination with genetics and systems-level approaches to yield new insight into the control of carbon allocation generally, and starch metabolism specifically. The methods can also be applied to the leaves of other plants with minimal modifications.


Assuntos
Técnicas de Química Analítica/métodos , Cloroplastos/metabolismo , Amido/metabolismo , Amilopectina/química , Amilopectina/metabolismo , Amilose/química , Amilose/metabolismo , Arabidopsis/citologia , Iodo/química , Fosfatos/química , Folhas de Planta/citologia , Coloração e Rotulagem , Amido/biossíntese , Amido/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...