Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neuro Oncol ; 25(11): 2058-2071, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37148198

RESUMO

BACKGROUND: Glioblastoma (GB) is incurable at present without established treatment options for recurrent disease. In this phase I first-in-human clinical trial we investigated safety and feasibility of adoptive transfer of clonal chimeric antigen receptor (CAR)-NK cells (NK-92/5.28.z) targeting HER2, which is expressed at elevated levels by a subset of glioblastomas. METHODS: Nine patients with recurrent HER2-positive GB were treated with single doses of 1 × 107, 3 × 107, or 1 × 108 irradiated CAR-NK cells injected into the margins of the surgical cavity during relapse surgery. Imaging at baseline and follow-up, peripheral blood lymphocyte phenotyping and analyses of the immune architecture by multiplex immunohistochemistry and spatial digital profiling were performed. RESULTS: There were no dose-limiting toxicities, and none of the patients developed a cytokine release syndrome or immune effector cell-associated neurotoxicity syndrome. Five patients showed stable disease after relapse surgery and CAR-NK injection that lasted 7 to 37 weeks. Four patients had progressive disease. Pseudoprogression was found at injection sites in 2 patients, suggestive of a treatment-induced immune response. For all patients, median progression-free survival was 7 weeks, and median overall survival was 31 weeks. Furthermore, the level of CD8+ T-cell infiltration in recurrent tumor tissue prior to CAR-NK cell injection positively correlated with time to progression. CONCLUSIONS: Intracranial injection of HER2-targeted CAR-NK cells is feasible and safe in patients with recurrent GB. 1 × 108 NK-92/5.28.z cells was determined as the maximum feasible dose for a subsequent expansion cohort with repetitive local injections of CAR-NK cells.


Assuntos
Glioblastoma , Receptores de Antígenos Quiméricos , Humanos , Glioblastoma/patologia , Recidiva Local de Neoplasia/tratamento farmacológico , Células Matadoras Naturais , Recidiva , Imunoterapia Adotiva/métodos
2.
Int J Mol Med ; 45(5): 1385-1396, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32323755

RESUMO

Adenosine monophosphate (AMP)­activated protein kinase (AMPK) is a major cellular energy sensor that is activated by an increase in the AMP/adenosine triphosphate (ATP) ratio. This causes the initiation of adaptive cellular programs, leading to the inhibition of anabolic pathways and increasing ATP synthesis. AMPK indirectly inhibits mammalian target of rapamycin (mTOR) complex 1 (mTORC1), a serine/threonine kinase and central regulator of cell growth and metabolism, which integrates various growth inhibitory signals, such as the depletion of glucose, amino acids, ATP and oxygen. While neuroprotective approaches by definition focus on neurons, that are more sensitive under cell stress conditions, astrocytes play an important role in the cerebral energy homeostasis during ischemia. Therefore, the protection of astrocytic cells or other glial cells may contribute to the preservation of neuronal integrity and function. In the present study, it was thus hypothesized that a preventive induction of energy deprivation­activated signaling pathways via AMPK may protect astrocytes from hypoxia and glucose deprivation. Hypoxia­induced cell death was measured in a paradigm of hypoxia and partial glucose deprivation in vitro in the immortalized human astrocytic cell line SVG. Both the glycolysis inhibitor 2­deoxy­d­glucose (2DG) and the AMPK activator A­769662 induced the phosphorylation of AMPK, resulting in mTORC1 inhibition, as evidenced by a decrease in the phosphorylation of the target ribosomal protein S6 (RPS6). Treatment with both 2DG and A­769662 also decreased glucose consumption and lactate production. Furthermore, A­769662, but not 2DG induced an increase in oxygen consumption, possibly indicating a more efficient glucose utilization through oxidative phosphorylation. Hypoxia­induced cell death was profoundly reduced by treatment with 2DG or A­769662. On the whole, the findings of the present study demonstrate, that AMPK activation via 2DG or A­769662 protects astrocytes under hypoxic and glucose­depleted conditions.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Astrócitos/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Hipóxia/tratamento farmacológico , Substâncias Protetoras/farmacologia , Astrócitos/metabolismo , Compostos de Bifenilo , Desoxiglucose/farmacologia , Glucose/metabolismo , Glicólise/efeitos dos fármacos , Humanos , Hipóxia/metabolismo , Neuroglia/efeitos dos fármacos , Neuroglia/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fosforilação Oxidativa/efeitos dos fármacos , Pironas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Tiofenos/farmacologia
3.
Redox Biol ; 14: 645-655, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29172151

RESUMO

Lung failure is responsible for significant morbidity and is a frequent cause of death in ataxia-telangiectasia (A-T). Disturbance in the redox balance of alveolar epithelial cells must be considered as a causal factor for respiratory disease in A-T. To investigate bronchoalveolar sensitivity to reactive oxygen species (ROS) and ROS-induced DNA damage, we used bleomycin (BLM) to induce experimental inflammation and fibrotic changes in the Atm-deficient mouse model. BLM or saline was administered by oropharyngeal instillation into the lung of Atm-deficient mice and wild-type mice. Mice underwent pulmonary function testing at days 0, 9, and 28, and bronchoalveolar lavage (BAL) was analysed for cell distribution and cytokines. Lung tissue was analysed by histochemistry. BLM administration resulted in a tremendous increase in lung inflammation and fibrotic changes in the lung tissue of Atm-deficient mice and was accompanied by irreversible deterioration of lung function. ATM (ataxia telangiectasia mutated) deficiency resulted in reduced cell viability, a delay in the resolution of γH2AX expression and a significant increase in intracellular ROS in pulmonary epithelial cells after BLM treatment. This was confirmed in the human epithelial cell line A549 treated with the ATM-kinase inhibitor KU55933. Our results demonstrate high bronchoalveolar sensitivity to ROS and ROS-induced DNA damage in the Atm-deficient mouse model and support the hypothesis that ATM plays a pivotal role in the control of oxidative stress-driven lung inflammation and fibrosis.


Assuntos
Ataxia Telangiectasia/metabolismo , Pulmão/patologia , Estresse Oxidativo , Pneumonia/metabolismo , Fibrose Pulmonar/metabolismo , Animais , Ataxia Telangiectasia/patologia , Linhagem Celular , Células Cultivadas , Citocinas/análise , Citocinas/metabolismo , Modelos Animais de Doenças , Humanos , Camundongos , Pneumonia/patologia , Fibrose Pulmonar/patologia , Espécies Reativas de Oxigênio/metabolismo
4.
Sci Rep ; 6: 36174, 2016 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-27824087

RESUMO

Plasmodium falciparum extensively modifies its chosen host cell, the mature human erythrocyte. This remodelling is carried out by parasite-encoded proteins that are exported into the host cell. To gain access to the human red blood cell, these proteins must cross the parasitophorous vacuole, a membrane bound compartment surrounding the parasite that is generated during the invasion process. Many exported proteins carry a so-called PEXEL/HT signal that directs their transport. We recently reported the unexpected finding of a species-restricted parasite-encoded Hsp70, termed PfHsp70x, which is exported into the host erythrocyte cytosol. PfHsp70x lacks a classical PEXEL/HT motif, and its transport appears to be mediated by a 7 amino acid motif directly following the hydrophobic N-terminal secretory signal. In this report, we analyse this short targeting sequence in detail. Surprisingly, both a reversed and scrambled version of the motif retained the capacity to confer protein export. Site directed mutagenesis of glutamate residues within this region leads to a block of protein trafficking within the lumen of the PV. In contrast to PEXEL-containing proteins, the targeting signal is not cleaved, but appears to be acetylated. Furthermore we show that, like other exported proteins, trafficking of PfHsp70x requires the vacuolar translocon, PTEX.


Assuntos
Proteínas de Choque Térmico HSP70/metabolismo , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/metabolismo , Motivos de Aminoácidos , Eritrócitos/metabolismo , Eritrócitos/parasitologia , Proteínas de Choque Térmico HSP70/genética , Humanos , Plasmodium falciparum/genética , Transporte Proteico/fisiologia , Proteínas de Protozoários/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...