Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(5): e0303987, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38814909

RESUMO

Digital video incurs many distortions during processing, compression, storage, and transmission, which can reduce perceived video quality. Developing adaptive video transmission methods that provide increased bandwidth and reduced storage space while preserving visual quality requires quality metrics that accurately describe how people perceive distortion. A severe problem for developing new video quality metrics is the limited data on how the early human visual system simultaneously processes spatial and temporal information. The problem is exacerbated by the fact that the few data collected in the middle of the last century do not consider current display equipment and are subject to medical intervention during collection, which does not guarantee a proper description of the conditions under which media content is currently consumed. In this paper, the 27840 thresholds of the visibility of spatio-temporal sinusoidal variations necessary to determine the artefacts that a human perceives were measured by a new method using different spatial sizes and temporal modulation rates. A multidimensional model of human contrast sensitivity in modern conditions of video content presentation is proposed based on new large-scale data obtained during the experiment. We demonstrate that the presented visibility model has a distinct advantage in predicting subjective video quality by testing with video quality metrics and including our and other visibility models against three publicly available video datasets.


Assuntos
Sensibilidades de Contraste , Gravação em Vídeo , Humanos , Sensibilidades de Contraste/fisiologia , Percepção Visual/fisiologia , Visão Ocular/fisiologia
2.
J Opt Soc Am A Opt Image Sci Vis ; 34(7): 1063-1072, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-29036114

RESUMO

Time-of-flight range imaging is analyzed using stochastic calculus. Through a series of interpretations and simplifications, the stochastic model leads to two methods for estimating linear radial velocity: maximum likelihood estimation on the transition probability distribution between measurements, and a new method based on analyzing the measured correlation waveform and its first derivative. The methods are tested in a simulated motion experiment from (-40)-(+40) m/s, with data from a camera imaging an object on a translation stage. In tests maximum likelihood is slow and unreliable, but when it works it estimates the linear velocity with standard deviation of 1 m/s or better. In comparison the new method is fast and reliable but works in a reduced velocity range of (-20)-(+20) m/s with standard deviation ranging from 3.5 m/s to 10 m/s.

3.
Opt Lett ; 40(22): 5391-4, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-26565882

RESUMO

Amplitude modulated continuous wave (AMCW) time of flight (ToF) range imaging provides a full field of distance measurement, but common hardware is implemented with digital technology which leads to unwanted harmonic content, a principle source of error in the distance measurements. Existing strategies for correction of harmonics require auxiliary measurements and amplify noise. A small modification of the data acquisition procedure is described which, intrinsically, is invariant to at least one harmonic. The third harmonic, the main cause of harmonic error, is targeted. Compared to traditional measurements the third harmonic is eliminated with no significant increase in noise variance observed.

4.
Appl Opt ; 54(33): 9654-64, 2015 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-26836520

RESUMO

Amplitude-modulated continuous wave (AMCW) time-of-flight (ToF) range imaging cameras measure distance by illuminating the scene with amplitude-modulated light and measuring the phase difference between the transmitted and reflected modulation envelope. This method of optical range measurement suffers from errors caused by multiple propagation paths, motion, phase wrapping, and nonideal amplitude modulation. In this paper a ToF camera is modified to operate in modes analogous to continuous wave (CW) and stepped frequency continuous wave (SFCW) lidar. In CW operation the velocity of objects can be measured. CW measurement of velocity was linear with true velocity (R2=0.9969). Qualitative analysis of a complex scene confirms that range measured by SFCW is resilient to errors caused by multiple propagation paths, phase wrapping, and nonideal amplitude modulation which plague AMCW operation. In viewing a complicated scene through a translucent sheet, quantitative comparison of AMCW with SFCW demonstrated a reduction in the median error from -1.3 m to -0.06 m with interquartile range of error reduced from 4.0 m to 0.18 m.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA